Download link
File List
-
16. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.mp4 160.46 MB
12. Probability - Distributions/29. A Practical Example of Probability Distributions.mp4 157.82 MB
11. Probability - Bayesian Inference/22. A Practical Example of Bayesian Inference.mp4 145.13 MB
40. Part 6 Mathematics/16. Why is Linear Algebra Useful.mp4 144.33 MB
5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.mp4 138.31 MB
10. Probability - Combinatorics/20. A Practical Example of Combinatorics.mp4 134.31 MB
3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 126.88 MB
5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.mp4 125.15 MB
56. Software Integration/5. Taking a Closer Look at APIs.mp4 115.59 MB
5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.mp4 111.66 MB
2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.mp4 108.99 MB
56. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.mp4 104.08 MB
6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.mp4 103.51 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4. Business Case Preprocessing.mp4 103.42 MB
19. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.mp4 102.67 MB
5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.mp4 99.32 MB
13. Probability - Probability in Other Fields/1. Probability in Finance.mp4 99.07 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/1. Practical Example Linear Regression (Part 1).mp4 97.08 MB
20. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.mp4 92.05 MB
12. Probability - Distributions/3. Types of Probability Distributions.mp4 91.58 MB
5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.mp4 89.94 MB
22. Part 4 Introduction to Python/5. Why Jupyter.srt 88.63 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1. Business Case Getting acquainted with the dataset.mp4 87.66 MB
36. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.mp4 86.49 MB
9. Part 2 Probability/1. The Basic Probability Formula.mp4 85.91 MB
51. Deep Learning - Business Case Example/4. Business Case Preprocessing the Data.mp4 84.33 MB
12. Probability - Distributions/15. Characteristics of Continuous Distributions.mp4 84.12 MB
20. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.mp4 82.62 MB
2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.mp4 81.41 MB
4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.mp4 81.19 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.mp4 81.11 MB
18. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.mp4 78.21 MB
13. Probability - Probability in Other Fields/2. Probability in Statistics.mp4 77.28 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/6. Creating a Data Provider.mp4 76.34 MB
9. Part 2 Probability/3. Computing Expected Values.mp4 75.68 MB
5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.mp4 75.5 MB
22. Part 4 Introduction to Python/3. Why Python.srt 75.09 MB
22. Part 4 Introduction to Python/3. Why Python.mp4 75.08 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.mp4 74.61 MB
38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.mp4 74.45 MB
12. Probability - Distributions/1. Fundamentals of Probability Distributions.mp4 73.4 MB
8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.mp4 72.85 MB
15. Statistics - Descriptive Statistics/1. Types of Data.mp4 72.52 MB
37. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.mp4 71.53 MB
18. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Dependent samples.mp4 70.48 MB
21. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.mp4 69.49 MB
56. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.mp4 69.03 MB
12. Probability - Distributions/11. Discrete Distributions The Binomial Distribution.mp4 68.83 MB
2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.mp4 67.75 MB
51. Deep Learning - Business Case Example/1. Business Case Exploring the Dataset and Identifying Predictors.mp4 66.28 MB
2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 64.51 MB
56. Software Integration/9. Software Integration - Explained.mp4 63.69 MB
13. Probability - Probability in Other Fields/3. Probability in Data Science.mp4 63.49 MB
17. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.mp4 62.89 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/9. MNIST Results and Testing.mp4 62.77 MB
1. Part 1 Introduction/2. What Does the Course Cover.mp4 62.26 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.mp4 61.91 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.mp4 61.76 MB
9. Part 2 Probability/5. Frequency.mp4 61.74 MB
17. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.mp4 61.59 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).mp4 61.13 MB
56. Software Integration/7. Communication between Software Products through Text Files.mp4 60.34 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.mp4 59.36 MB
61. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.mp4 59.33 MB
18. Statistics - Inferential Statistics Confidence Intervals/10. Margin of Error.mp4 59.17 MB
9. Part 2 Probability/7. Events and Their Complements.mp4 59.15 MB
52. Deep Learning - Conclusion/4. An overview of CNNs.mp4 58.79 MB
22. Part 4 Introduction to Python/1. Introduction to Programming.mp4 58.55 MB
14. Part 3 Statistics/1. Population and Sample.mp4 58.11 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/8. Practical Example Linear Regression (Part 5).mp4 57.89 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/1. The Linear Regression Model.mp4 57.38 MB
10. Probability - Combinatorics/11. Solving Combinations.mp4 57.34 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.mp4 57.28 MB
11. Probability - Bayesian Inference/7. Union of Sets.mp4 57.19 MB
18. Statistics - Inferential Statistics Confidence Intervals/5. Confidence Interval Clarifications.mp4 57.03 MB
61. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.mp4 56.55 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/4. MNIST Model Outline.mp4 56.38 MB
38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).mp4 56.12 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/6. Practical Example Linear Regression (Part 4).mp4 56.05 MB
20. Statistics - Hypothesis Testing/10. p-value.srt 55.88 MB
20. Statistics - Hypothesis Testing/10. p-value.mp4 55.87 MB
12. Probability - Distributions/13. Discrete Distributions The Poisson Distribution.mp4 55.76 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/18. Dealing with Categorical Data - Dummy Variables.mp4 55.67 MB
42. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 55.63 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/3. Adjusted R-Squared.mp4 54.84 MB
15. Statistics - Descriptive Statistics/3. Levels of Measurement.mp4 54.38 MB
7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.mp4 54.38 MB
60. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.mp4 54.26 MB
20. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.mp4 54.22 MB
2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.mp4 53.55 MB
11. Probability - Bayesian Inference/1. Sets and Events.mp4 53.47 MB
37. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.mp4 53.42 MB
26. Python - Conditional Statements/4. The ELIF Statement.srt 53.35 MB
26. Python - Conditional Statements/4. The ELIF Statement.mp4 53.34 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/7. Business Case Model Outline.mp4 53.12 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/5. Splitting the Data for Training and Testing.mp4 52.76 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/8. Interpreting the Coefficients for Our Problem.mp4 52.37 MB
57. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 52.3 MB
38. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.mp4 51.82 MB
22. Part 4 Introduction to Python/7. Installing Python and Jupyter.mp4 50.99 MB
49. Deep Learning - Preprocessing/3. Standardization.mp4 50.99 MB
15. Statistics - Descriptive Statistics/22. Variance.mp4 50.95 MB
23. Python - Variables and Data Types/5. Python Strings.mp4 50.64 MB
20. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.mp4 50.37 MB
18. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.mp4 49.99 MB
11. Probability - Bayesian Inference/20. Bayes' Law.mp4 49.93 MB
17. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.mp4 49.85 MB
51. Deep Learning - Business Case Example/9. Business Case Setting an Early Stopping Mechanism.mp4 49.81 MB
40. Part 6 Mathematics/5. Linear Algebra and Geometry.mp4 49.79 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/13. Decomposition of Variability.mp4 49.66 MB
40. Part 6 Mathematics/15. Dot Product of Matrices.mp4 49.43 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/19. Train - Test Split Explained.mp4 49.17 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.mp4 49.06 MB
1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.mp4 49.03 MB
11. Probability - Bayesian Inference/18. The Multiplication Law.mp4 49.02 MB
12. Probability - Distributions/17. Continuous Distributions The Normal Distribution.mp4 48.24 MB
12. Probability - Distributions/19. Continuous Distributions The Standard Normal Distribution.mp4 47.9 MB
17. Statistics - Inferential Statistics Fundamentals/13. Estimators and Estimates.mp4 47.83 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.mp4 47.79 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/4. TensorFlow Intro.mp4 47.7 MB
11. Probability - Bayesian Inference/3. Ways Sets Can Interact.mp4 47.43 MB
12. Probability - Distributions/27. Continuous Distributions The Logistic Distribution.mp4 47.05 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/8. MNIST Learning.mp4 46.68 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/2. Practical Example Linear Regression (Part 2).mp4 46.01 MB
11. Probability - Bayesian Inference/13. The Conditional Probability Formula.mp4 45.87 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/2. Creating the Targets for the Logistic Regression.mp4 45.8 MB
15. Statistics - Descriptive Statistics/24. Standard Deviation and Coefficient of Variation.mp4 45.12 MB
42. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.mp4 45.1 MB
52. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.mp4 44.78 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/11. How to Interpret the Regression Table.mp4 44.65 MB
39. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.mp4 44.58 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/8. First Regression in Python.mp4 44.56 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.mp4 44.49 MB
22. Part 4 Introduction to Python/5. Why Jupyter.mp4 44.31 MB
38. Advanced Statistical Methods - K-Means Clustering/6. How to Choose the Number of Clusters.mp4 44.14 MB
20. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.mp4 43.93 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.mp4 43.9 MB
10. Probability - Combinatorics/9. Solving Variations without Repetition.srt 43.15 MB
10. Probability - Combinatorics/9. Solving Variations without Repetition.mp4 43.14 MB
38. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).mp4 43.01 MB
42. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.mp4 42.92 MB
5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.mp4 42.78 MB
10. Probability - Combinatorics/3. Permutations and How to Use Them.mp4 42.72 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/13. A3 Normality and Homoscedasticity.mp4 42.7 MB
28. Python - Sequences/7. Dictionaries.mp4 41.69 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/6. Fitting the Model and Assessing its Accuracy.mp4 41.62 MB
50. Deep Learning - Classifying on the MNIST Dataset/6. MNIST Preprocess the Data - Shuffle and Batch.mp4 41.52 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/8. Business Case Optimization.mp4 41.52 MB
10. Probability - Combinatorics/17. Combinatorics in Real-Life The Lottery.mp4 41.29 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 41.19 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/17. R-Squared.mp4 41.03 MB
50. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Learning.mp4 40.96 MB
57. Case Study - What's Next in the Course/3. Introducing the Data Set.mp4 40.87 MB
61. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.mp4 40.63 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/7. Python Packages Installation.mp4 40.59 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.mp4 40.57 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.mp4 40.41 MB
10. Probability - Combinatorics/13. Symmetry of Combinations.mp4 40.31 MB
20. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.mp4 40.25 MB
12. Probability - Distributions/25. Continuous Distributions The Exponential Distribution.mp4 40.23 MB
15. Statistics - Descriptive Statistics/14. Cross Tables and Scatter Plots.mp4 39.81 MB
52. Deep Learning - Conclusion/1. Summary on What You've Learned.mp4 39.75 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.mp4 39.59 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.mp4 39.56 MB
42. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.mp4 39.43 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/3. The Importance of Working with a Balanced Dataset.mp4 39.41 MB
57. Case Study - What's Next in the Course/2. The Business Task.mp4 39.15 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/14. Feature Scaling (Standardization).mp4 39.08 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/7. Creating a Summary Table with the Coefficients and Intercept.mp4 38.87 MB
44. Deep Learning - TensorFlow 2.0 Introduction/1. How to Install TensorFlow 2.0.mp4 38.76 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.mp4 38.73 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 38.5 MB
10. Probability - Combinatorics/19. A Recap of Combinatorics.mp4 38.49 MB
15. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.mp4 38.46 MB
36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.mp4 38.44 MB
42. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 38.32 MB
27. Python - Python Functions/2. How to Create a Function with a Parameter.mp4 38.1 MB
40. Part 6 Mathematics/13. Transpose of a Matrix.mp4 38.08 MB
28. Python - Sequences/1. Lists.mp4 37.8 MB
38. Advanced Statistical Methods - K-Means Clustering/8. Pros and Cons of K-Means Clustering.mp4 37.7 MB
28. Python - Sequences/3. Using Methods.mp4 37.59 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.mp4 37.45 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/9. Basic NN Example with TF Model Output.mp4 37.39 MB
42. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.mp4 37.25 MB
15. Statistics - Descriptive Statistics/17. Mean, median and mode.mp4 37.13 MB
5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).mp4 36.82 MB
20. Statistics - Hypothesis Testing/18. Test for the mean. Independent samples (Part 2).mp4 36.39 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11. Business Case A Comment on the Homework.mp4 36.39 MB
37. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.mp4 36.16 MB
10. Probability - Combinatorics/5. Simple Operations with Factorials.mp4 36.12 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/11. A2 No Endogeneity.mp4 35.67 MB
18. Statistics - Inferential Statistics Confidence Intervals/6. Student's T Distribution.mp4 35.44 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.mp4 34.95 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).mp4 34.94 MB
11. Probability - Bayesian Inference/15. The Law of Total Probability.mp4 34.93 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/15. Feature Selection through Standardization of Weights.mp4 34.89 MB
11. Probability - Bayesian Inference/11. Dependence and Independence of Sets.mp4 34.79 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/3. Simple Linear Regression with sklearn.mp4 34.78 MB
36. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.mp4 34.69 MB
44. Deep Learning - TensorFlow 2.0 Introduction/6. Outlining the Model with TensorFlow 2.mp4 34.69 MB
12. Probability - Distributions/9. Discrete Distributions The Bernoulli Distribution.mp4 34.13 MB
10. Probability - Combinatorics/7. Solving Variations with Repetition.mp4 34 MB
20. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).mp4 33.94 MB
40. Part 6 Mathematics/3. Scalars and Vectors.mp4 33.85 MB
30. Python - Advanced Python Tools/1. Object Oriented Programming.mp4 33.6 MB
40. Part 6 Mathematics/1. What is a matrix.mp4 33.59 MB
44. Deep Learning - TensorFlow 2.0 Introduction/2. TensorFlow Outline and Comparison with Other Libraries.mp4 33.51 MB
10. Probability - Combinatorics/15. Solving Combinations with Separate Sample Spaces.mp4 33.15 MB
36. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.mp4 32.85 MB
46. Deep Learning - Overfitting/3. What is Validation.mp4 32.71 MB
40. Part 6 Mathematics/10. Addition and Subtraction of Matrices.mp4 32.61 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/8. Basic NN Example with TF Loss Function and Gradient Descent.mp4 32.51 MB
36. Advanced Statistical Methods - Logistic Regression/9. What do the Odds Actually Mean.mp4 32.28 MB
36. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.mp4 32.28 MB
18. Statistics - Inferential Statistics Confidence Intervals/8. Confidence Intervals; Population Variance Unknown; t-score.mp4 32.21 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 32.01 MB
18. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Dependent samples.srt 32 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/14. A4 No Autocorrelation.mp4 31.51 MB
51. Deep Learning - Business Case Example/8. Business Case Learning and Interpreting the Result.mp4 31.18 MB
41. Part 7 Deep Learning/1. What to Expect from this Part.mp4 31.1 MB
46. Deep Learning - Overfitting/1. What is Overfitting.mp4 31.09 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/8. Calculating the Adjusted R-Squared in sklearn.mp4 30.88 MB
28. Python - Sequences/5. List Slicing.mp4 30.76 MB
22. Part 4 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.mp4 30.58 MB
36. Advanced Statistical Methods - Logistic Regression/7. Understanding Logistic Regression Tables.mp4 30.56 MB
51. Deep Learning - Business Case Example/3. Business Case Balancing the Dataset.mp4 30.44 MB
44. Deep Learning - TensorFlow 2.0 Introduction/7. Interpreting the Result and Extracting the Weights and Bias.mp4 30.27 MB
38. Advanced Statistical Methods - K-Means Clustering/9. To Standardize or not to Standardize.mp4 30.11 MB
25. Python - Other Python Operators/3. Logical and Identity Operators.mp4 30.05 MB
5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.mp4 29.93 MB
29. Python - Iterations/8. How to Iterate over Dictionaries.mp4 29.66 MB
39. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.mp4 29.62 MB
5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).mp4 29.54 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.mp4 29.53 MB
50. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.mp4 29.53 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/10. Feature Selection (F-regression).srt 29.52 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/10. Feature Selection (F-regression).mp4 29.52 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.mp4 29.52 MB
28. Python - Sequences/6. Tuples.mp4 29.5 MB
15. Statistics - Descriptive Statistics/30. Correlation Coefficient.mp4 29.38 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 29.08 MB
39. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.mp4 29.07 MB
50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 29.05 MB
49. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.mp4 28.95 MB
18. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent samples (Part 1).mp4 28.76 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/16. A5 No Multicollinearity.mp4 28.71 MB
42. Deep Learning - Introduction to Neural Networks/3. Training the Model.mp4 28.71 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.mp4 28.68 MB
42. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).mp4 28.45 MB
29. Python - Iterations/3. While Loops and Incrementing.mp4 28.44 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/15. What is the OLS.mp4 28.31 MB
50. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Outline the Model.mp4 28.23 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.mp4 27.96 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.mp4 27.85 MB
49. Deep Learning - Preprocessing/1. Preprocessing Introduction.mp4 27.78 MB
29. Python - Iterations/6. Conditional Statements and Loops.mp4 27.76 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.mp4 27.68 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1. Exploring the Problem with a Machine Learning Mindset.mp4 27.54 MB
15. Statistics - Descriptive Statistics/27. Covariance.mp4 27.48 MB
38. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.mp4 27.29 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/1. What is sklearn and How is it Different from Other Packages.mp4 27.26 MB
12. Probability - Distributions/21. Continuous Distributions The Students' T Distribution.mp4 27.18 MB
36. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.mp4 27.07 MB
11. Probability - Bayesian Inference/16. The Additive Rule.mp4 26.97 MB
11. Probability - Bayesian Inference/5. Intersection of Sets.mp4 26.96 MB
18. Statistics - Inferential Statistics Confidence Intervals/16. Confidence intervals. Two means. Independent samples (Part 2).mp4 26.83 MB
40. Part 6 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 26.67 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 26.35 MB
12. Probability - Distributions/23. Continuous Distributions The Chi-Squared Distribution.mp4 26.34 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/16. Predicting with the Standardized Coefficients.mp4 25.97 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.mp4 25.92 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.mp4 25.86 MB
15. Statistics - Descriptive Statistics/8. Numerical Variables - Frequency Distribution Table.mp4 25.85 MB
29. Python - Iterations/4. Lists with the range() Function.mp4 25.79 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/9. Business Case Interpretation.mp4 25.74 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.mp4 25.67 MB
60. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.mp4 25.48 MB
11. Probability - Bayesian Inference/9. Mutually Exclusive Sets.mp4 25.39 MB
23. Python - Variables and Data Types/1. Variables.mp4 25.3 MB
52. Deep Learning - Conclusion/5. An Overview of RNNs.mp4 25.26 MB
27. Python - Python Functions/3. Defining a Function in Python - Part II.srt 25.25 MB
27. Python - Python Functions/3. Defining a Function in Python - Part II.mp4 25.24 MB
46. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.mp4 25.19 MB
42. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.mp4 25.11 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.mp4 25.09 MB
46. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.mp4 25.07 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/20. Making Predictions with the Linear Regression.mp4 24.69 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).mp4 24.4 MB
12. Probability - Distributions/7. Discrete Distributions The Uniform Distribution.mp4 24.39 MB
46. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.mp4 24.17 MB
40. Part 6 Mathematics/14. Dot Product.mp4 24 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/4. Practical Example Linear Regression (Part 3).mp4 23.69 MB
29. Python - Iterations/1. For Loops.mp4 23.6 MB
42. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.mp4 23.28 MB
26. Python - Conditional Statements/3. The ELSE Statement.mp4 23.28 MB
26. Python - Conditional Statements/1. The IF Statement.mp4 23.24 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.mp4 23.15 MB
36. Advanced Statistical Methods - Logistic Regression/6. An Invaluable Coding Tip.mp4 23.05 MB
44. Deep Learning - TensorFlow 2.0 Introduction/8. Customizing a TensorFlow 2 Model.mp4 22.91 MB
17. Statistics - Inferential Statistics Fundamentals/11. Standard error.mp4 22.78 MB
12. Probability - Distributions/5. Characteristics of Discrete Distributions.mp4 22.7 MB
42. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.mp4 22.64 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp4 22.58 MB
40. Part 6 Mathematics/8. What is a Tensor.mp4 22.52 MB
17. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.mp4 22.51 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).mp4 22.36 MB
36. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.mp4 22.3 MB
5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.mp4 22.04 MB
27. Python - Python Functions/7. Built-in Functions in Python.mp4 22.02 MB
44. Deep Learning - TensorFlow 2.0 Introduction/3. TensorFlow 1 vs TensorFlow 2.mp4 21.99 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/7. OLS Assumptions.mp4 21.86 MB
47. Deep Learning - Initialization/1. What is Initialization.mp4 21.76 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.mp4 21.63 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/1. Multiple Linear Regression.mp4 21.52 MB
38. Advanced Statistical Methods - K-Means Clustering/4. Clustering Categorical Data.mp4 21.23 MB
46. Deep Learning - Overfitting/5. N-Fold Cross Validation.mp4 20.7 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).mp4 20.6 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/4. Standardizing the Data.mp4 20.6 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/6. Types of File Formats, supporting Tensors.mp4 20.35 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.mp4 20.19 MB
52. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.mp4 20.12 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/7. Multiple Linear Regression with sklearn.mp4 20.07 MB
26. Python - Conditional Statements/5. A Note on Boolean Values.mp4 19.99 MB
18. Statistics - Inferential Statistics Confidence Intervals/18. Confidence intervals. Two means. Independent samples (Part 3).mp4 19.94 MB
30. Python - Advanced Python Tools/7. Importing Modules in Python.mp4 19.93 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.mp4 19.5 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/2. How are Going to Approach this Section.mp4 19.41 MB
15. Statistics - Descriptive Statistics/19. Skewness.mp4 19.4 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/7. Python Packages Installation.srt 19.18 MB
24. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.mp4 18.92 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/3. MNIST Relevant Packages.mp4 18.9 MB
50. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp4 18.67 MB
49. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.mp4 18.61 MB
30. Python - Advanced Python Tools/5. What is the Standard Library.mp4 18.03 MB
42. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.mp4 17.92 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.mp4 17.82 MB
51. Deep Learning - Business Case Example/6. Business Case Load the Preprocessed Data.mp4 17.57 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/5. Actual Introduction to TensorFlow.mp4 17.41 MB
31. Part 5 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.mp4 17.33 MB
47. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 17.14 MB
36. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.mp4 17.11 MB
23. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.mp4 17.06 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/18. Underfitting and Overfitting.mp4 16.95 MB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/3. Selecting the Inputs for the Logistic Regression.mp4 16.75 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/6. Test for Significance of the Model (F-Test).mp4 16.43 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.mp4 16.43 MB
44. Deep Learning - TensorFlow 2.0 Introduction/5. Types of File Formats Supporting TensorFlow.mp4 16.4 MB
50. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Importing the Relevant Packages and Loading the Data.mp4 16.32 MB
10. Probability - Combinatorics/1. Fundamentals of Combinatorics.mp4 16.21 MB
27. Python - Python Functions/5. Conditional Statements and Functions.mp4 15.68 MB
17. Statistics - Inferential Statistics Fundamentals/1. Introduction.mp4 15.5 MB
27. Python - Python Functions/1. Defining a Function in Python.mp4 14.75 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/3. Correlation vs Regression.mp4 14.73 MB
27. Python - Python Functions/6. Functions Containing a Few Arguments.mp4 14.72 MB
37. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.mp4 14.56 MB
47. Deep Learning - Initialization/2. Types of Simple Initializations.mp4 14.32 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.mp4 14.02 MB
50. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Select the Loss and the Optimizer.mp4 13.91 MB
22. Part 4 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 13.79 MB
15. Statistics - Descriptive Statistics/11. The Histogram.mp4 13.78 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.mp4 13.75 MB
50. Deep Learning - Classifying on the MNIST Dataset/1. MNIST The Dataset.mp4 13.39 MB
24. Python - Basic Python Syntax/12. Structuring with Indentation.mp4 13.15 MB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.mp4 12.86 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/9. A1 Linearity.mp4 12.61 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.mp4 12.5 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/12. Creating a Summary Table with p-values.srt 12.32 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/12. Creating a Summary Table with p-values.mp4 12.3 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/10. Using Seaborn for Graphs.mp4 12.24 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/2. Business Case Outlining the Solution.mp4 12.21 MB
49. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.mp4 11.84 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/2. How to Install TensorFlow 1.mp4 11.35 MB
22. Part 4 Introduction to Python/11. Python 2 vs Python 3.mp4 11.27 MB
24. Python - Basic Python Syntax/7. Add Comments.mp4 11.26 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/10. Business Case Testing the Model.mp4 11.2 MB
40. Part 6 Mathematics/12. Errors when Adding Matrices.mp4 11.17 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.mp4 11.01 MB
51. Deep Learning - Business Case Example/11. Business Case Testing the Model.mp4 10.8 MB
25. Python - Other Python Operators/1. Comparison Operators.mp4 10.17 MB
38. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.mp4 9.93 MB
29. Python - Iterations/7. Conditional Statements, Functions, and Loops.mp4 9.48 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.mp4 9.12 MB
12. Probability - Distributions/29.1 FIFA19.csv.csv 8.65 MB
12. Probability - Distributions/29.3 FIFA19 (post).csv.csv 8.64 MB
30. Python - Advanced Python Tools/3. Modules and Packages.mp4 8.51 MB
27. Python - Python Functions/4. How to Use a Function within a Function.mp4 8.14 MB
51. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.mp4 7.31 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/14. Feature Scaling (Standardization).srt 7.11 MB
2. The Field of Data Science - The Various Data Science Disciplines/7.2 365_DataScience.png.png 6.93 MB
2. The Field of Data Science - The Various Data Science Disciplines/9.1 365_DataScience.png.png 6.93 MB
44. Deep Learning - TensorFlow 2.0 Introduction/4. A Note on TensorFlow 2 Syntax.mp4 6.75 MB
24. Python - Basic Python Syntax/3. The Double Equality Sign.mp4 5.99 MB
24. Python - Basic Python Syntax/10. Indexing Elements.mp4 5.93 MB
32. Advanced Statistical Methods - Linear regression with StatsModels/5. Geometrical Representation of the Linear Regression Model.mp4 5.13 MB
24. Python - Basic Python Syntax/5. How to Reassign Values.mp4 4.01 MB
24. Python - Basic Python Syntax/9. Understanding Line Continuation.mp4 2.35 MB
22. Part 4 Introduction to Python/11.1 Python Introduction - Course Notes.pdf.pdf 2.03 MB
23. Python - Variables and Data Types/1.1 Python Introduction - Course Notes.pdf.pdf 2.03 MB
19. Statistics - Practical Example Inferential Statistics/2.2 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx 1.82 MB
19. Statistics - Practical Example Inferential Statistics/1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx 1.74 MB
19. Statistics - Practical Example Inferential Statistics/2.1 3.17.Practical-example.Confidence-intervals-exercise.xlsx.xlsx 1.73 MB
20. Statistics - Hypothesis Testing/10.1 Online p-value calculator.pdf.pdf 1.15 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1.1 Course Notes - Section 6.pdf.pdf 936.42 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2.1 Course Notes - Section 6.pdf.pdf 936.42 KB
11. Probability - Bayesian Inference/22.1 CDS_2017-2018 Hamilton.pdf.pdf 845.31 KB
51. Deep Learning - Business Case Example/1.1 Audiobooks_data.csv.csv 710.77 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1.1 Audiobooks_data.csv.csv 710.77 KB
20. Statistics - Hypothesis Testing/1.1 Course notes_hypothesis_testing.pdf.pdf 648.2 KB
20. Statistics - Hypothesis Testing/4.1 Course notes_hypothesis_testing.pdf.pdf 648.2 KB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.2 Shortcuts-for-Jupyter.pdf.pdf 619.17 KB
44. Deep Learning - TensorFlow 2.0 Introduction/1.1 Shortcuts-for-Jupyter.pdf.pdf 619.17 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/5.2 Shortcuts-for-Jupyter.pdf.pdf 619.17 KB
42. Deep Learning - Introduction to Neural Networks/1.1 Course Notes - Section 2.pdf.pdf 578.08 KB
42. Deep Learning - Introduction to Neural Networks/3.1 Course Notes - Section 2.pdf.pdf 578.08 KB
14. Part 3 Statistics/1.2 Course notes_descriptive_statistics.pdf.pdf 482.21 KB
15. Statistics - Descriptive Statistics/1.1 Course notes_descriptive_statistics.pdf.pdf 482.21 KB
12. Probability - Distributions/1.1 Course Notes - Probability Distributions.pdf.pdf 463.95 KB
11. Probability - Bayesian Inference/1.1 Course Notes - Bayesian Inference.pdf.pdf 386.01 KB
17. Statistics - Inferential Statistics Fundamentals/1.1 Course notes_inferential statistics.pdf.pdf 382.32 KB
17. Statistics - Inferential Statistics Fundamentals/2.2 Course notes_inferential statistics.pdf.pdf 382.32 KB
9. Part 2 Probability/1.1 Course Notes - Basic Probability.pdf.pdf 371.05 KB
12. Probability - Distributions/15.1 Solving Integrals.pdf.pdf 343.85 KB
2. The Field of Data Science - The Various Data Science Disciplines/5.1 365_DataScience_Diagram.pdf.pdf 323.08 KB
2. The Field of Data Science - The Various Data Science Disciplines/7.1 365_DataScience_Diagram.pdf.pdf 323.08 KB
1. Part 1 Introduction/3.1 FAQ_The_Data_Science_Course.pdf.pdf 306.1 KB
15. Statistics - Descriptive Statistics/13.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf 289.12 KB
15. Statistics - Descriptive Statistics/7.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf 289.12 KB
10. Probability - Combinatorics/20.2 Additional Exercises Combinatorics Solutions.pdf.pdf 245.67 KB
10. Probability - Combinatorics/1.1 Course Notes - Combinatorics.pdf.pdf 226.12 KB
10. Probability - Combinatorics/11.1 Combinations With Repetition.pdf.pdf 207.41 KB
13. Probability - Probability in Other Fields/1.1 Probability in Finance Solutions.pdf.pdf 184.46 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf 182.36 KB
16. Statistics - Practical Example Descriptive Statistics/1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx 146.51 KB
16. Statistics - Practical Example Descriptive Statistics/2.1 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx 146.38 KB
12. Probability - Distributions/13.1 Poisson - Expected Value and Variance.pdf.pdf 145.99 KB
12. Probability - Distributions/17.1 Normal Distribution - Exp and Var.pdf.pdf 144.08 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/1.2 data_preprocessing_homework.pdf.pdf 134.47 KB
16. Statistics - Practical Example Descriptive Statistics/2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx 120.27 KB
13. Probability - Probability in Other Fields/1.2 Probability in Finance Homework.pdf.pdf 110.68 KB
10. Probability - Combinatorics/20.1 Additional Exercises Combinatorics.pdf.pdf 106.58 KB
10. Probability - Combinatorics/13.1 Symmetry Explained.pdf.pdf 85.04 KB
21. Statistics - Practical Example Hypothesis Testing/1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx 51.71 KB
21. Statistics - Practical Example Hypothesis Testing/2.1 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx 44.04 KB
21. Statistics - Practical Example Hypothesis Testing/2.2 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx 43.38 KB
42. Deep Learning - Introduction to Neural Networks/21.1 GD-function-example.xlsx.xlsx 42.33 KB
15. Statistics - Descriptive Statistics/7.3 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx 41.11 KB
15. Statistics - Descriptive Statistics/16.2 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx 40.44 KB
15. Statistics - Descriptive Statistics/19.1 2.8. Skewness_lesson.xlsx.xlsx 34.63 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/1.1 Absenteeism_data.csv.csv 32.05 KB
15. Statistics - Descriptive Statistics/5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx 30.77 KB
11. Probability - Bayesian Inference/22.2 Bayesian Homework - Solutions.pdf.pdf 30.35 KB
15. Statistics - Descriptive Statistics/29.1 2.11. Covariance_exercise_solution.xlsx.xlsx 29.51 KB
15. Statistics - Descriptive Statistics/32.1 2.12. Correlation_exercise_solution.xlsx.xlsx 29.48 KB
15. Statistics - Descriptive Statistics/32.2 2.12. Correlation_exercise.xlsx.xlsx 29.3 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1.1 Absenteeism_preprocessed.csv.csv 29.13 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/1.3 df_preprocessed.csv.csv 29.11 KB
11. Probability - Bayesian Inference/22.3 Bayesian Homework .pdf.pdf 27.26 KB
15. Statistics - Descriptive Statistics/14.1 2.6. Cross table and scatter plot.xlsx.xlsx 26.12 KB
18. Statistics - Inferential Statistics Confidence Intervals/3.2 3.9.The-z-table.xlsx.xlsx 25.58 KB
18. Statistics - Inferential Statistics Confidence Intervals/4.3 3.9.The-z-table.xlsx.xlsx 25.58 KB
15. Statistics - Descriptive Statistics/27.1 2.11. Covariance_lesson.xlsx.xlsx 24.92 KB
17. Statistics - Inferential Statistics Fundamentals/8.2 3.4.Standard-normal-distribution-exercise-solution.xlsx.xlsx 24.04 KB
1. Part 1 Introduction/3. Download All Resources and Important FAQ.html 21.35 KB
16. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.srt 20.78 KB
14. Part 3 Statistics/1.1 Statistics Glossary.xlsx.xlsx 20.26 KB
15. Statistics - Descriptive Statistics/29.2 2.11. Covariance_exercise.xlsx.xlsx 20.23 KB
12. Probability - Distributions/29.6 Daily Views (post).xlsx.xlsx 20.21 KB
15. Statistics - Descriptive Statistics/1.2 Glossary.xlsx.xlsx 19.97 KB
12. Probability - Distributions/29. A Practical Example of Probability Distributions.srt 19.91 KB
15. Statistics - Descriptive Statistics/21.2 2.8. Skewness_exercise_solution.xlsx.xlsx 19.78 KB
36. Advanced Statistical Methods - Logistic Regression/11.2 Bank_data.csv.csv 19.55 KB
36. Advanced Statistical Methods - Logistic Regression/13.1 Bank_data.csv.csv 19.55 KB
36. Advanced Statistical Methods - Logistic Regression/16.2 Bank_data.csv.csv 19.55 KB
36. Advanced Statistical Methods - Logistic Regression/8.2 Bank_data.csv.csv 19.55 KB
17. Statistics - Inferential Statistics Fundamentals/2.1 3.2. What is a distribution_lesson.xlsx.xlsx 19.46 KB
11. Probability - Bayesian Inference/22. A Practical Example of Bayesian Inference.srt 19.32 KB
15. Statistics - Descriptive Statistics/11.1 2.5. The Histogram_lesson.xlsx.xlsx 18.63 KB
15. Statistics - Descriptive Statistics/13.1 2.5.The-Histogram-exercise-solution.xlsx.xlsx 17.1 KB
15. Statistics - Descriptive Statistics/16.1 2.6. Cross table and scatter plot_exercise.xlsx.xlsx 16.28 KB
18. Statistics - Inferential Statistics Confidence Intervals/8.1 3.11. The t-table.xlsx.xlsx 15.85 KB
18. Statistics - Inferential Statistics Confidence Intervals/9.2 3.11.The-t-table.xlsx.xlsx 15.85 KB
12. Probability - Distributions/29.2 Customers_Membership (post).xlsx.xlsx 15.62 KB
15. Statistics - Descriptive Statistics/13.3 2.5.The-Histogram-exercise.xlsx.xlsx 15.5 KB
15. Statistics - Descriptive Statistics/7.1 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx 15.24 KB
35. Advanced Statistical Methods - Practical Example Linear Regression/1. Practical Example Linear Regression (Part 1).srt 14.86 KB
23. Python - Variables and Data Types/5. Python Strings.srt 14.55 KB
20. Statistics - Hypothesis Testing/12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx 14.54 KB
20. Statistics - Hypothesis Testing/15.1 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx 14.4 KB
18. Statistics - Inferential Statistics Confidence Intervals/13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx 14.24 KB
10. Probability - Combinatorics/20. A Practical Example of Combinatorics.srt 13.96 KB
18. Statistics - Inferential Statistics Confidence Intervals/13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx 13.74 KB
19. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.srt 13.64 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4. Business Case Preprocessing.srt 13.45 KB
15. Statistics - Descriptive Statistics/10.2 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx 13.15 KB
20. Statistics - Hypothesis Testing/15.2 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx 12.8 KB
20. Statistics - Hypothesis Testing/13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx 12.63 KB
15. Statistics - Descriptive Statistics/26.1 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx.xlsx 12.6 KB
51. Deep Learning - Business Case Example/4. Business Case Preprocessing the Data.srt 12.3 KB
17. Statistics - Inferential Statistics Fundamentals/8.1 3.4.Standard-normal-distribution-exercise.xlsx.xlsx 11.99 KB
2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.srt 11.87 KB
40. Part 6 Mathematics/16. Why is Linear Algebra Useful.srt 11.79 KB
15. Statistics - Descriptive Statistics/10.1 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx 11.75 KB
15. Statistics - Descriptive Statistics/26.2 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx.xlsx 11.61 KB
35. Advanced Statistical Methods - Practical Example Linear Regression/6. Practical Example Linear Regression (Part 4).srt 11.49 KB
15. Statistics - Descriptive Statistics/8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx 11.44 KB
20. Statistics - Hypothesis Testing/20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx.xlsx 11.39 KB
15. Statistics - Descriptive Statistics/18.2 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx 11.35 KB
20. Statistics - Hypothesis Testing/13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx 11.34 KB
20. Statistics - Hypothesis Testing/17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx.xlsx 11.25 KB
20. Statistics - Hypothesis Testing/9.1 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx 11.22 KB
18. Statistics - Inferential Statistics Confidence Intervals/3.1 3.9. Population variance known, z-score_lesson.xlsx.xlsx 11.21 KB
18. Statistics - Inferential Statistics Confidence Intervals/4.1 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx 11.16 KB
18. Statistics - Inferential Statistics Confidence Intervals/9.1 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx 11.1 KB
15. Statistics - Descriptive Statistics/23.2 2.9. Variance_exercise_solution.xlsx.xlsx 11.05 KB
20. Statistics - Hypothesis Testing/9.2 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx 11.03 KB
5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.srt 10.98 KB
15. Statistics - Descriptive Statistics/24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx 10.97 KB
20. Statistics - Hypothesis Testing/8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx 10.96 KB
15. Statistics - Descriptive Statistics/18.1 2.7. Mean, median and mode_exercise.xlsx.xlsx 10.87 KB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).srt 10.86 KB
18. Statistics - Inferential Statistics Confidence Intervals/4.2 3.9. Population variance known, z-score_exercise.xlsx.xlsx 10.83 KB
15. Statistics - Descriptive Statistics/23.1 2.9. Variance_exercise.xlsx.xlsx 10.83 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1. Business Case Getting acquainted with the dataset.srt 10.78 KB
18. Statistics - Inferential Statistics Confidence Intervals/8.2 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx 10.78 KB
20. Statistics - Hypothesis Testing/17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx.xlsx 10.77 KB
51. Deep Learning - Business Case Example/1. Business Case Exploring the Dataset and Identifying Predictors.srt 10.66 KB
2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.srt 10.63 KB
5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.srt 10.62 KB
18. Statistics - Inferential Statistics Confidence Intervals/9.3 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx 10.62 KB
35. Advanced Statistical Methods - Practical Example Linear Regression/8. Practical Example Linear Regression (Part 5).srt 10.59 KB
20. Statistics - Hypothesis Testing/20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx.xlsx 10.54 KB
5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.srt 10.51 KB
15. Statistics - Descriptive Statistics/17.1 2.7. Mean, median and mode_lesson.xlsx.xlsx 10.49 KB
18. Statistics - Inferential Statistics Confidence Intervals/12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx 10.47 KB
56. Software Integration/5. Taking a Closer Look at APIs.srt 10.39 KB
17. Statistics - Inferential Statistics Fundamentals/6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx 10.38 KB
38. Advanced Statistical Methods - K-Means Clustering/5.1 Categorical.csv.csv 10.34 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.srt 10.2 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/8. MNIST Learning.srt 10.19 KB
18. Statistics - Inferential Statistics Confidence Intervals/15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx 10.12 KB
15. Statistics - Descriptive Statistics/22.1 2.9. Variance_lesson.xlsx.xlsx 10.08 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.srt 10.02 KB
61. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.srt 10.01 KB
13. Probability - Probability in Other Fields/1. Probability in Finance.srt 9.83 KB
18. Statistics - Inferential Statistics Confidence Intervals/14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx 9.83 KB
28. Python - Sequences/1. Lists.srt 9.83 KB
18. Statistics - Inferential Statistics Confidence Intervals/15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx 9.83 KB
18. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.srt 9.8 KB
18. Statistics - Inferential Statistics Confidence Intervals/17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 9.79 KB
20. Statistics - Hypothesis Testing/14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx 9.79 KB
12. Probability - Distributions/29.5 Customers_Membership.xlsx.xlsx 9.69 KB
20. Statistics - Hypothesis Testing/16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx 9.63 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/19. Train - Test Split Explained.srt 9.59 KB
38. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.srt 9.59 KB
61. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.srt 9.54 KB
12. Probability - Distributions/29.4 Daily Views.xlsx.xlsx 9.53 KB
18. Statistics - Inferential Statistics Confidence Intervals/16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx 9.52 KB
40. Part 6 Mathematics/15. Dot Product of Matrices.srt 9.52 KB
15. Statistics - Descriptive Statistics/21.1 2.8. Skewness_exercise.xlsx.xlsx 9.49 KB
12. Probability - Distributions/3. Types of Probability Distributions.srt 9.45 KB
20. Statistics - Hypothesis Testing/18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx 9.31 KB
50. Deep Learning - Classifying on the MNIST Dataset/6. MNIST Preprocess the Data - Shuffle and Batch.srt 9.26 KB
38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).srt 9.18 KB
18. Statistics - Inferential Statistics Confidence Intervals/17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx 9.17 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/4. MNIST Model Outline.srt 9.06 KB
3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt 8.99 KB
27. Python - Python Functions/2. How to Create a Function with a Parameter.srt 8.98 KB
9. Part 2 Probability/1. The Basic Probability Formula.srt 8.9 KB
22. Part 4 Introduction to Python/7. Installing Python and Jupyter.srt 8.84 KB
5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.srt 8.73 KB
20. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.srt 8.69 KB
12. Probability - Distributions/15. Characteristics of Continuous Distributions.srt 8.66 KB
5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.srt 8.63 KB
56. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.srt 8.54 KB
21. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.srt 8.49 KB
42. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.srt 8.47 KB
13. Probability - Probability in Other Fields/2. Probability in Statistics.srt 8.44 KB
28. Python - Sequences/7. Dictionaries.srt 8.43 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.srt 8.43 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/2. Creating the Targets for the Logistic Regression.srt 8.39 KB
28. Python - Sequences/3. Using Methods.srt 8.36 KB
12. Probability - Distributions/11. Discrete Distributions The Binomial Distribution.srt 8.3 KB
36. Advanced Statistical Methods - Logistic Regression/16.3 Bank_data_testing.csv.csv 8.3 KB
38. Advanced Statistical Methods - K-Means Clustering/3.2 Countries_exercise.csv.csv 8.27 KB
38. Advanced Statistical Methods - K-Means Clustering/7.1 Countries_exercise.csv.csv 8.27 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/9. MNIST Results and Testing.srt 8.17 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/18. Dealing with Categorical Data - Dummy Variables.srt 8.15 KB
20. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.srt 8.14 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/5. Splitting the Data for Training and Testing.srt 8.1 KB
35. Advanced Statistical Methods - Practical Example Linear Regression/2. Practical Example Linear Regression (Part 2).srt 8.03 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.srt 7.97 KB
50. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Learning.srt 7.94 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/9. Basic NN Example with TF Model Output.srt 7.93 KB
29. Python - Iterations/8. How to Iterate over Dictionaries.srt 7.93 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/8. First Regression in Python.srt 7.91 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/8. Interpreting the Coefficients for Our Problem.srt 7.89 KB
44. Deep Learning - TensorFlow 2.0 Introduction/6. Outlining the Model with TensorFlow 2.srt 7.83 KB
51. Deep Learning - Business Case Example/9. Business Case Setting an Early Stopping Mechanism.srt 7.82 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.srt 7.81 KB
22. Part 4 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.srt 7.79 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/6. Creating a Data Provider.srt 7.75 KB
29. Python - Iterations/4. Lists with the range() Function.srt 7.66 KB
26. Python - Conditional Statements/1. The IF Statement.srt 7.6 KB
12. Probability - Distributions/1. Fundamentals of Probability Distributions.srt 7.54 KB
15. Statistics - Descriptive Statistics/22. Variance.srt 7.53 KB
60. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.srt 7.53 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/3. Adjusted R-Squared.srt 7.53 KB
38. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).srt 7.53 KB
42. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.srt 7.53 KB
29. Python - Iterations/6. Conditional Statements and Loops.srt 7.46 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/6. Fitting the Model and Assessing its Accuracy.srt 7.38 KB
38. Advanced Statistical Methods - K-Means Clustering/6. How to Choose the Number of Clusters.srt 7.37 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.srt 7.36 KB
39. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.srt 7.36 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/3. Simple Linear Regression with sklearn.srt 7.33 KB
6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.srt 7.29 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/15. Feature Selection through Standardization of Weights.srt 7.26 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.srt 7.25 KB
61. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.srt 7.21 KB
50. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Outline the Model.srt 7.2 KB
11. Probability - Bayesian Inference/20. Bayes' Law.srt 7.2 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/1. The Linear Regression Model.srt 7.06 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.srt 7.04 KB
20. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.srt 6.97 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/7. Business Case Model Outline.srt 6.94 KB
28. Python - Sequences/6. Tuples.srt 6.92 KB
22. Part 4 Introduction to Python/1. Introduction to Programming.srt 6.9 KB
46. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.srt 6.86 KB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).srt 6.79 KB
9. Part 2 Probability/7. Events and Their Complements.srt 6.71 KB
56. Software Integration/9. Software Integration - Explained.srt 6.71 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.srt 6.7 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.srt 6.69 KB
15. Statistics - Descriptive Statistics/14. Cross Tables and Scatter Plots.srt 6.68 KB
9. Part 2 Probability/3. Computing Expected Values.srt 6.68 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/13. A3 Normality and Homoscedasticity.srt 6.67 KB
38. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.srt 6.67 KB
13. Probability - Probability in Other Fields/3. Probability in Data Science.srt 6.65 KB
2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.srt 6.62 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/7. Creating a Summary Table with the Coefficients and Intercept.srt 6.62 KB
15. Statistics - Descriptive Statistics/24. Standard Deviation and Coefficient of Variation.srt 6.6 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/8. Business Case Optimization.srt 6.6 KB
29. Python - Iterations/1. For Loops.srt 6.58 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/17. R-Squared.srt 6.57 KB
12. Probability - Distributions/13. Discrete Distributions The Poisson Distribution.srt 6.57 KB
36. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.srt 6.55 KB
4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.srt 6.5 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.srt 6.5 KB
52. Deep Learning - Conclusion/4. An overview of CNNs.srt 6.44 KB
15. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.srt 6.43 KB
9. Part 2 Probability/5. Frequency.srt 6.42 KB
38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.srt 6.39 KB
44. Deep Learning - TensorFlow 2.0 Introduction/1. How to Install TensorFlow 2.0.srt 6.38 KB
1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.srt 6.37 KB
39. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.srt 6.34 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/11. How to Interpret the Regression Table.srt 6.3 KB
26. Python - Conditional Statements/3. The ELSE Statement.srt 6.28 KB
50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Preprocess the Data - Create a Validation Set and Scale It.srt 6.27 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/8. Calculating the Adjusted R-Squared in sklearn.srt 6.27 KB
51. Deep Learning - Business Case Example/8. Business Case Learning and Interpreting the Result.srt 6.27 KB
20. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.srt 6.26 KB
37. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.srt 6.24 KB
44. Deep Learning - TensorFlow 2.0 Introduction/7. Interpreting the Result and Extracting the Weights and Bias.srt 6.23 KB
26. Python - Conditional Statements/5. A Note on Boolean Values.srt 6.21 KB
36. Advanced Statistical Methods - Logistic Regression/5.1 Example_bank_data.csv.csv 6.21 KB
40. Part 6 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.srt 6.13 KB
18. Statistics - Inferential Statistics Confidence Intervals/10. Margin of Error.srt 6.11 KB
30. Python - Advanced Python Tools/1. Object Oriented Programming.srt 6.1 KB
18. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent samples (Part 1).srt 6.07 KB
23. Python - Variables and Data Types/1. Variables.srt 6.05 KB
50. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.srt 6.02 KB
49. Deep Learning - Preprocessing/3. Standardization.srt 5.97 KB
15. Statistics - Descriptive Statistics/1. Types of Data.srt 5.95 KB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt 5.93 KB
56. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.srt 5.93 KB
29. Python - Iterations/3. While Loops and Incrementing.srt 5.9 KB
42. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.srt 5.9 KB
38. Advanced Statistical Methods - K-Means Clustering/9. To Standardize or not to Standardize.srt 5.88 KB
17. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.srt 5.85 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.srt 5.85 KB
36. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.srt 5.79 KB
25. Python - Other Python Operators/3. Logical and Identity Operators.srt 5.77 KB
20. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.srt 5.73 KB
15. Statistics - Descriptive Statistics/17. Mean, median and mode.srt 5.73 KB
18. Statistics - Inferential Statistics Confidence Intervals/8. Confidence Intervals; Population Variance Unknown; t-score.srt 5.71 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.srt 5.67 KB
5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.srt 5.67 KB
20. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.srt 5.67 KB
17. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.srt 5.63 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.srt 5.62 KB
10. Probability - Combinatorics/11. Solving Combinations.srt 5.61 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/16. Predicting with the Standardized Coefficients.srt 5.59 KB
46. Deep Learning - Overfitting/1. What is Overfitting.srt 5.58 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.srt 5.57 KB
36. Advanced Statistical Methods - Logistic Regression/7. Understanding Logistic Regression Tables.srt 5.56 KB
28. Python - Sequences/5. List Slicing.srt 5.55 KB
11. Probability - Bayesian Inference/7. Union of Sets.srt 5.53 KB
20. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).srt 5.49 KB
56. Software Integration/7. Communication between Software Products through Text Files.srt 5.47 KB
14. Part 3 Statistics/1. Population and Sample.srt 5.47 KB
42. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.srt 5.46 KB
57. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.srt 5.46 KB
36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.srt 5.41 KB
18. Statistics - Inferential Statistics Confidence Intervals/5. Confidence Interval Clarifications.srt 5.41 KB
40. Part 6 Mathematics/13. Transpose of a Matrix.srt 5.37 KB
27. Python - Python Functions/1. Defining a Function in Python.srt 5.32 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11. Business Case A Comment on the Homework.srt 5.3 KB
8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.srt 5.29 KB
12. Probability - Distributions/19. Continuous Distributions The Standard Normal Distribution.srt 5.28 KB
42. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.srt 5.25 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.srt 5.25 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/11. A2 No Endogeneity.srt 5.24 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.srt 5.24 KB
44. Deep Learning - TensorFlow 2.0 Introduction/2. TensorFlow Outline and Comparison with Other Libraries.srt 5.24 KB
42. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.srt 5.23 KB
52. Deep Learning - Conclusion/1. Summary on What You've Learned.srt 5.21 KB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).srt 5.21 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/4. TensorFlow Intro.srt 5.2 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.srt 5.19 KB
20. Statistics - Hypothesis Testing/18. Test for the mean. Independent samples (Part 2).srt 5.14 KB
52. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.srt 5.12 KB
2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.srt 5.1 KB
1. Part 1 Introduction/2. What Does the Course Cover.srt 5.08 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.srt 5.07 KB
2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.srt 5.07 KB
11. Probability - Bayesian Inference/1. Sets and Events.srt 5.06 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).srt 5.03 KB
12. Probability - Distributions/27. Continuous Distributions The Logistic Distribution.srt 5.02 KB
36. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.srt 4.97 KB
11. Probability - Bayesian Inference/13. The Conditional Probability Formula.srt 4.93 KB
15. Statistics - Descriptive Statistics/27. Covariance.srt 4.92 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/14. A4 No Autocorrelation.srt 4.9 KB
17. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.srt 4.9 KB
46. Deep Learning - Overfitting/3. What is Validation.srt 4.9 KB
36. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.srt 4.88 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/8. Basic NN Example with TF Loss Function and Gradient Descent.srt 4.83 KB
30. Python - Advanced Python Tools/7. Importing Modules in Python.srt 4.81 KB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.srt 4.81 KB
49. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.srt 4.81 KB
37. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.srt 4.8 KB
36. Advanced Statistical Methods - Logistic Regression/9. What do the Odds Actually Mean.srt 4.79 KB
12. Probability - Distributions/17. Continuous Distributions The Normal Distribution.srt 4.77 KB
60. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.srt 4.76 KB
15. Statistics - Descriptive Statistics/30. Correlation Coefficient.srt 4.71 KB
51. Deep Learning - Business Case Example/6. Business Case Load the Preprocessed Data.srt 4.7 KB
24. Python - Basic Python Syntax/12. Structuring with Indentation.srt 4.68 KB
39. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.srt 4.66 KB
41. Part 7 Deep Learning/1. What to Expect from this Part.srt 4.63 KB
11. Probability - Bayesian Inference/18. The Multiplication Law.srt 4.62 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/16. A5 No Multicollinearity.srt 4.62 KB
38. Advanced Statistical Methods - K-Means Clustering/8. Pros and Cons of K-Means Clustering.srt 4.61 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1. Exploring the Problem with a Machine Learning Mindset.srt 4.58 KB
15. Statistics - Descriptive Statistics/3. Levels of Measurement.srt 4.54 KB
18. Statistics - Inferential Statistics Confidence Intervals/16. Confidence intervals. Two means. Independent samples (Part 2).srt 4.51 KB
51. Deep Learning - Business Case Example/3. Business Case Balancing the Dataset.srt 4.5 KB
7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.srt 4.49 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/3. The Importance of Working with a Balanced Dataset.srt 4.48 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.srt 4.47 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.srt 4.46 KB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).srt 4.46 KB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).srt 4.46 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.srt 4.46 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/20. Making Predictions with the Linear Regression.srt 4.44 KB
11. Probability - Bayesian Inference/3. Ways Sets Can Interact.srt 4.39 KB
15. Statistics - Descriptive Statistics/8. Numerical Variables - Frequency Distribution Table.srt 4.36 KB
40. Part 6 Mathematics/1. What is a matrix.srt 4.34 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.srt 4.34 KB
10. Probability - Combinatorics/13. Symmetry of Combinations.srt 4.3 KB
42. Deep Learning - Introduction to Neural Networks/3. Training the Model.srt 4.28 KB
40. Part 6 Mathematics/14. Dot Product.srt 4.26 KB
27. Python - Python Functions/7. Built-in Functions in Python.srt 4.21 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/4. Standardizing the Data.srt 4.19 KB
46. Deep Learning - Overfitting/5. N-Fold Cross Validation.srt 4.17 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/7. Multiple Linear Regression with sklearn.srt 4.17 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/13. Decomposition of Variability.srt 4.17 KB
10. Probability - Combinatorics/17. Combinatorics in Real-Life The Lottery.srt 4.15 KB
57. Case Study - What's Next in the Course/3. Introducing the Data Set.srt 4.15 KB
12. Probability - Distributions/25. Continuous Distributions The Exponential Distribution.srt 4.13 KB
18. Statistics - Inferential Statistics Confidence Intervals/6. Student's T Distribution.srt 4.13 KB
36. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.srt 4.13 KB
35. Advanced Statistical Methods - Practical Example Linear Regression/4. Practical Example Linear Regression (Part 3).srt 4.12 KB
24. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.srt 4.11 KB
44. Deep Learning - TensorFlow 2.0 Introduction/8. Customizing a TensorFlow 2 Model.srt 4.11 KB
40. Part 6 Mathematics/5. Linear Algebra and Geometry.srt 4.09 KB
10. Probability - Combinatorics/3. Permutations and How to Use Them.srt 4.07 KB
37. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.srt 4.05 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.srt 4.05 KB
40. Part 6 Mathematics/10. Addition and Subtraction of Matrices.srt 4.04 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.srt 3.99 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.srt 3.97 KB
17. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.srt 3.94 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.srt 3.88 KB
42. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).srt 3.88 KB
24. Python - Basic Python Syntax/7. Add Comments.srt 3.87 KB
49. Deep Learning - Preprocessing/1. Preprocessing Introduction.srt 3.87 KB
12. Probability - Distributions/9. Discrete Distributions The Bernoulli Distribution.srt 3.85 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/15. What is the OLS.srt 3.82 KB
40. Part 6 Mathematics/3. Scalars and Vectors.srt 3.78 KB
57. Case Study - What's Next in the Course/2. The Business Task.srt 3.74 KB
10. Probability - Combinatorics/15. Solving Combinations with Separate Sample Spaces.srt 3.73 KB
22. Part 4 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.srt 3.73 KB
10. Probability - Combinatorics/19. A Recap of Combinatorics.srt 3.72 KB
17. Statistics - Inferential Statistics Fundamentals/13. Estimators and Estimates.srt 3.71 KB
47. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.srt 3.71 KB
52. Deep Learning - Conclusion/5. An Overview of RNNs.srt 3.71 KB
23. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.srt 3.68 KB
47. Deep Learning - Initialization/2. Types of Simple Initializations.srt 3.67 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/3. Selecting the Inputs for the Logistic Regression.srt 3.66 KB
15. Statistics - Descriptive Statistics/19. Skewness.srt 3.64 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.srt 3.64 KB
44. Deep Learning - TensorFlow 2.0 Introduction/3. TensorFlow 1 vs TensorFlow 2.srt 3.63 KB
38. Advanced Statistical Methods - K-Means Clustering/15.2 iris_with_answers.csv.csv 3.63 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.srt 3.62 KB
40. Part 6 Mathematics/8. What is a Tensor.srt 3.61 KB
46. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.srt 3.6 KB
5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.srt 3.58 KB
50. Deep Learning - Classifying on the MNIST Dataset/1. MNIST The Dataset.srt 3.58 KB
30. Python - Advanced Python Tools/5. What is the Standard Library.srt 3.56 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.srt 3.53 KB
50. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.srt 3.52 KB
27. Python - Python Functions/5. Conditional Statements and Functions.srt 3.51 KB
47. Deep Learning - Initialization/1. What is Initialization.srt 3.5 KB
44. Deep Learning - TensorFlow 2.0 Introduction/5. Types of File Formats Supporting TensorFlow.srt 3.5 KB
11. Probability - Bayesian Inference/15. The Law of Total Probability.srt 3.49 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.srt 3.49 KB
10. Probability - Combinatorics/7. Solving Variations with Repetition.srt 3.47 KB
11. Probability - Bayesian Inference/11. Dependence and Independence of Sets.srt 3.46 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/18. Underfitting and Overfitting.srt 3.45 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/6. Types of File Formats, supporting Tensors.srt 3.45 KB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.srt 3.45 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/1. What is sklearn and How is it Different from Other Packages.srt 3.42 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/2. How to Install TensorFlow 1.srt 3.42 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/1. Multiple Linear Regression.srt 3.35 KB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).srt 3.33 KB
22. Part 4 Introduction to Python/11. Python 2 vs Python 3.srt 3.31 KB
36. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.srt 3.28 KB
37. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.srt 3.28 KB
10. Probability - Combinatorics/5. Simple Operations with Factorials.srt 3.26 KB
18. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.srt 3.26 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.srt 3.24 KB
38. Advanced Statistical Methods - K-Means Clustering/4. Clustering Categorical Data.srt 3.24 KB
36. Advanced Statistical Methods - Logistic Regression/6. An Invaluable Coding Tip.srt 3.2 KB
42. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.srt 3.09 KB
50. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Importing the Relevant Packages and Loading the Data.srt 3.07 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/7. OLS Assumptions.srt 3.03 KB
50. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Select the Loss and the Optimizer.srt 3.02 KB
15. Statistics - Descriptive Statistics/11. The Histogram.srt 3.01 KB
27. Python - Python Functions/6. Functions Containing a Few Arguments.srt 3 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/9. Business Case Interpretation.srt 2.94 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/2. How are Going to Approach this Section.srt 2.92 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.srt 2.92 KB
5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).srt 2.9 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/5. What's Regression Analysis - a Quick Refresher.html 2.84 KB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.srt 2.83 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.srt 2.8 KB
12. Probability - Distributions/21. Continuous Distributions The Students' T Distribution.srt 2.79 KB
42. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.srt 2.77 KB
49. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.srt 2.76 KB
12. Probability - Distributions/23. Continuous Distributions The Chi-Squared Distribution.srt 2.76 KB
11. Probability - Bayesian Inference/16. The Additive Rule.srt 2.74 KB
12. Probability - Distributions/7. Discrete Distributions The Uniform Distribution.srt 2.73 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/10. Business Case Testing the Model.srt 2.71 KB
42. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.srt 2.69 KB
46. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.srt 2.63 KB
40. Part 6 Mathematics/12. Errors when Adding Matrices.srt 2.57 KB
62. Bonus lecture/1. Bonus Lecture Next Steps.html 2.56 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/6. Test for Significance of the Model (F-Test).srt 2.55 KB
52. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.srt 2.55 KB
55. Appendix Deep Learning - TensorFlow 1 Business Case/2. Business Case Outlining the Solution.srt 2.52 KB
11. Probability - Bayesian Inference/9. Mutually Exclusive Sets.srt 2.52 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/1. What to Expect from the Following Sections.html 2.48 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.srt 2.47 KB
11. Probability - Bayesian Inference/5. Intersection of Sets.srt 2.47 KB
25. Python - Other Python Operators/1. Comparison Operators.srt 2.47 KB
12. Probability - Distributions/5. Characteristics of Discrete Distributions.srt 2.46 KB
29. Python - Iterations/7. Conditional Statements, Functions, and Loops.srt 2.41 KB
38. Advanced Statistical Methods - K-Means Clustering/14.1 iris_dataset.csv.csv 2.4 KB
38. Advanced Statistical Methods - K-Means Clustering/15.1 iris_dataset.csv.csv 2.4 KB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.srt 2.39 KB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/9. A1 Linearity.srt 2.36 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/14. Dropping a Dummy Variable from the Data Set.html 2.34 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/3. A Note on Installing Packages in Anaconda.html 2.3 KB
20. Statistics - Hypothesis Testing/2. Further Reading on Null and Alternative Hypothesis.html 2.29 KB
5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.srt 2.24 KB
31. Part 5 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.srt 2.21 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10. MNIST Solutions.html 2.19 KB
38. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.srt 2.18 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/5. Actual Introduction to TensorFlow.srt 2.17 KB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.srt 2.16 KB
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/14. ARTICLE - A Note on 'pickling'.html 2.14 KB
5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).srt 2.13 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/11. MNIST Exercises.html 2.13 KB
42. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.srt 2.12 KB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/3. MNIST Relevant Packages.srt 2.12 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/3. Correlation vs Regression.srt 2.1 KB
51. Deep Learning - Business Case Example/11. Business Case Testing the Model.srt 2.04 KB
27. Python - Python Functions/4. How to Use a Function within a Function.srt 2.03 KB
17. Statistics - Inferential Statistics Fundamentals/11. Standard error.srt 2.02 KB
51. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.srt 2 KB
50. Deep Learning - Classifying on the MNIST Dataset/11. MNIST - Exercises.html 1.98 KB
18. Statistics - Inferential Statistics Confidence Intervals/18. Confidence intervals. Two means. Independent samples (Part 3).srt 1.96 KB
5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.srt 1.88 KB
24. Python - Basic Python Syntax/3. The Double Equality Sign.srt 1.82 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.srt 1.82 KB
24. Python - Basic Python Syntax/10. Indexing Elements.srt 1.7 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.srt 1.7 KB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5. Basic NN Example Exercises.html 1.66 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/5. Geometrical Representation of the Linear Regression Model.srt 1.64 KB
49. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.srt 1.63 KB
17. Statistics - Inferential Statistics Fundamentals/1. Introduction.srt 1.63 KB
36. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.srt 1.61 KB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10. Basic NN Example with TF Exercises.html 1.59 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/10. Using Seaborn for Graphs.srt 1.48 KB
44. Deep Learning - TensorFlow 2.0 Introduction/4. A Note on TensorFlow 2 Syntax.srt 1.36 KB
32. Advanced Statistical Methods - Linear regression with StatsModels/9. First Regression in Python Exercise.html 1.33 KB
10. Probability - Combinatorics/1. Fundamentals of Combinatorics.srt 1.3 KB
24. Python - Basic Python Syntax/5. How to Reassign Values.srt 1.29 KB
44. Deep Learning - TensorFlow 2.0 Introduction/9. Basic NN with TensorFlow Exercises.html 1.29 KB
30. Python - Advanced Python Tools/3. Modules and Packages.srt 1.26 KB
58. Case Study - Preprocessing the 'Absenteeism_data'/29. EXERCISE - Removing the Date Column.html 1.21 KB
24. Python - Basic Python Syntax/9. Understanding Line Continuation.srt 1.13 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/7.2 1.02. Multiple linear regression.csv.csv 1.07 KB
34. Advanced Statistical Methods - Linear Regression with sklearn/8.3 1.02. Multiple linear regression.csv.csv 1.07 KB
52. Deep Learning - Conclusion/3. DeepMind and Deep Learning.html 1.05 KB
60. Case Study - Loading the 'absenteeism_module'/4. Exporting the Obtained Data Set as a .csv.html 998 B
34. Advanced Statistical Methods - Linear Regression with sklearn/3.3 1.01. Simple linear regression.csv.csv 922 B
34. Advanced Statistical Methods - Linear Regression with sklearn/4.2 1.01. Simple linear regression.csv.csv 922 B
58. Case Study - Preprocessing the 'Absenteeism_data'/33. A Note on Exporting Your Data as a .csv File.html 883 B
58. Case Study - Preprocessing the 'Absenteeism_data'/8. EXERCISE - Dropping a Column from a DataFrame in Python.html 866 B
35. Advanced Statistical Methods - Practical Example Linear Regression/3. A Note on Multicollinearity.html 849 B
34. Advanced Statistical Methods - Linear Regression with sklearn/5. A Note on Normalization.html 733 B
35. Advanced Statistical Methods - Practical Example Linear Regression/7. Dummy Variables - Exercise.html 713 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/1. READ ME!!!!.html 564 B
61. Case Study - Analyzing the Predicted Outputs in Tableau/5. EXERCISE - Transportation Expense vs Probability.html 553 B
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9. Backpropagation - A Peek into the Mathematics of Optimization.html 539 B
15. Statistics - Descriptive Statistics/23. Variance Exercise.html 522 B
60. Case Study - Loading the 'absenteeism_module'/1. Are You Sure You're All Set.html 519 B
35. Advanced Statistical Methods - Practical Example Linear Regression/9. Linear Regression - Exercise.html 503 B
58. Case Study - Preprocessing the 'Absenteeism_data'/22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 471 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/12. Business Case Final Exercise.html 439 B
51. Deep Learning - Business Case Example/12. Business Case Final Exercise.html 433 B
61. Case Study - Analyzing the Predicted Outputs in Tableau/3. EXERCISE - Reasons vs Probability.html 397 B
61. Case Study - Analyzing the Predicted Outputs in Tableau/1. EXERCISE - Age vs Probability.html 385 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/5. Business Case Preprocessing Exercise.html 383 B
34. Advanced Statistical Methods - Linear Regression with sklearn/11. A Note on Calculation of P-values with sklearn.html 372 B
51. Deep Learning - Business Case Example/5. Business Case Preprocessing the Data - Exercise.html 370 B
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15. EXERCISE - Saving the Model (and Scaler).html 284 B
[FreeAllCourse.Com].URL 228 B
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11.1 Logistic Regression prior to Backward Elimination.html 226 B
40. Part 6 Mathematics/12.1 Errors when Adding Matrices Python Notebook.html 220 B
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9.1 Logistic Regression prior to Custom Scaler.html 219 B
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15.1 Logistic Regression with Comments.html 210 B
34. Advanced Statistical Methods - Linear Regression with sklearn/8.1 Multiple Linear Regression and Adjusted R-squared with Comments.html 201 B
59. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15.2 Logistic Regression.html 196 B
51. Deep Learning - Business Case Example/10. Setting an Early Stopping Mechanism - Exercise.html 192 B
58. Case Study - Preprocessing the 'Absenteeism_data'/29.2 Preprocessing.html 191 B
58. Case Study - Preprocessing the 'Absenteeism_data'/18. EXERCISE - Using .concat() in Python.html 189 B
58. Case Study - Preprocessing the 'Absenteeism_data'/29.1 Removing the “Date” Column.html 188 B
34. Advanced Statistical Methods - Linear Regression with sklearn/8.2 Multiple Linear Regression and Adjusted R-squared.html 187 B
60. Case Study - Loading the 'absenteeism_module'/4.1 Deploying the ‘absenteeism_module.html 185 B
40. Part 6 Mathematics/7.1 Arrays in Python Notebook.html 181 B
40. Part 6 Mathematics/10.1 Addition and Subtraction of Matrices Python Notebook.html 178 B
58. Case Study - Preprocessing the 'Absenteeism_data'/23.1 Creating Checkpoints.html 176 B
34. Advanced Statistical Methods - Linear Regression with sklearn/7.3 Multiple Linear Regression with sklearn with Comments.html 172 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.10 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html 172 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.3 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html 172 B
40. Part 6 Mathematics/15.1 Dot Product of Matrices Python Notebook.html 171 B
34. Advanced Statistical Methods - Linear Regression with sklearn/3.1 Simple Linear Regression with sklearn with Comments.html 170 B
34. Advanced Statistical Methods - Linear Regression with sklearn/4.3 Simple Linear Regression with sklearn with Comments.html 170 B
58. Case Study - Preprocessing the 'Absenteeism_data'/32.1 Exercises and solutions.html 170 B
40. Part 6 Mathematics/13.1 Transpose of a Matrix Python Notebook.html 167 B
58. Case Study - Preprocessing the 'Absenteeism_data'/21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 167 B
10. Probability - Combinatorics/10. Solving Variations without Repetition.html 165 B
10. Probability - Combinatorics/12. Solving Combinations.html 165 B
10. Probability - Combinatorics/14. Symmetry of Combinations.html 165 B
10. Probability - Combinatorics/16. Solving Combinations with Separate Sample Spaces.html 165 B
10. Probability - Combinatorics/18. Combinatorics in Real-Life The Lottery.html 165 B
10. Probability - Combinatorics/2. Fundamentals of Combinatorics.html 165 B
10. Probability - Combinatorics/4. Permutations and How to Use Them.html 165 B
10. Probability - Combinatorics/6. Simple Operations with Factorials.html 165 B
10. Probability - Combinatorics/8. Solving Variations with Repetition.html 165 B
11. Probability - Bayesian Inference/10. Mutually Exclusive Sets.html 165 B
11. Probability - Bayesian Inference/12. Dependence and Independence of Sets.html 165 B
11. Probability - Bayesian Inference/14. The Conditional Probability Formula.html 165 B
11. Probability - Bayesian Inference/17. The Additive Rule.html 165 B
11. Probability - Bayesian Inference/19. The Multiplication Law.html 165 B
11. Probability - Bayesian Inference/2. Sets and Events.html 165 B
11. Probability - Bayesian Inference/21. Bayes' Law.html 165 B
11. Probability - Bayesian Inference/4. Ways Sets Can Interact.html 165 B
11. Probability - Bayesian Inference/6. Intersection of Sets.html 165 B
11. Probability - Bayesian Inference/8. Union of Sets.html 165 B
12. Probability - Distributions/10. Discrete Distributions The Bernoulli Distribution.html 165 B
12. Probability - Distributions/12. Discrete Distributions The Binomial Distribution.html 165 B
12. Probability - Distributions/14. Discrete Distributions The Poisson Distribution.html 165 B
12. Probability - Distributions/16. Characteristics of Continuous Distributions.html 165 B
12. Probability - Distributions/18. Continuous Distributions The Normal Distribution.html 165 B
12. Probability - Distributions/2. Fundamentals of Probability Distributions.html 165 B
12. Probability - Distributions/20. Continuous Distributions The Standard Normal Distribution.html 165 B
12. Probability - Distributions/22. Continuous Distributions The Students' T Distribution.html 165 B
12. Probability - Distributions/24. Continuous Distributions The Chi-Squared Distribution.html 165 B
12. Probability - Distributions/26. Continuous Distributions The Exponential Distribution.html 165 B
12. Probability - Distributions/28. Continuous Distributions The Logistic Distribution.html 165 B
12. Probability - Distributions/4. Types of Probability Distributions.html 165 B
12. Probability - Distributions/6. Characteristics of Discrete Distributions.html 165 B
12. Probability - Distributions/8. Discrete Distributions The Uniform Distribution.html 165 B
14. Part 3 Statistics/2. Population and Sample.html 165 B
15. Statistics - Descriptive Statistics/12. The Histogram.html 165 B
15. Statistics - Descriptive Statistics/15. Cross Tables and Scatter Plots.html 165 B
15. Statistics - Descriptive Statistics/2. Types of Data.html 165 B
15. Statistics - Descriptive Statistics/20. Skewness.html 165 B
15. Statistics - Descriptive Statistics/25. Standard Deviation.html 165 B
15. Statistics - Descriptive Statistics/28. Covariance.html 165 B
15. Statistics - Descriptive Statistics/31. Correlation.html 165 B
15. Statistics - Descriptive Statistics/4. Levels of Measurement.html 165 B
15. Statistics - Descriptive Statistics/6. Categorical Variables - Visualization Techniques.html 165 B
15. Statistics - Descriptive Statistics/9. Numerical Variables - Frequency Distribution Table.html 165 B
17. Statistics - Inferential Statistics Fundamentals/10. Central Limit Theorem.html 165 B
17. Statistics - Inferential Statistics Fundamentals/12. Standard Error.html 165 B
17. Statistics - Inferential Statistics Fundamentals/14. Estimators and Estimates.html 165 B
17. Statistics - Inferential Statistics Fundamentals/3. What is a Distribution.html 165 B
17. Statistics - Inferential Statistics Fundamentals/5. The Normal Distribution.html 165 B
17. Statistics - Inferential Statistics Fundamentals/7. The Standard Normal Distribution.html 165 B
18. Statistics - Inferential Statistics Confidence Intervals/11. Margin of Error.html 165 B
18. Statistics - Inferential Statistics Confidence Intervals/2. What are Confidence Intervals.html 165 B
18. Statistics - Inferential Statistics Confidence Intervals/7. Student's T Distribution.html 165 B
2. The Field of Data Science - The Various Data Science Disciplines/10. A Breakdown of our Data Science Infographic.html 165 B
2. The Field of Data Science - The Various Data Science Disciplines/2. Data Science and Business Buzzwords Why are there so many.html 165 B
2. The Field of Data Science - The Various Data Science Disciplines/4. What is the difference between Analysis and Analytics.html 165 B
2. The Field of Data Science - The Various Data Science Disciplines/6. Business Analytics, Data Analytics, and Data Science An Introduction.html 165 B
2. The Field of Data Science - The Various Data Science Disciplines/8. Continuing with BI, ML, and AI.html 165 B
20. Statistics - Hypothesis Testing/11. p-value.html 165 B
20. Statistics - Hypothesis Testing/19. Test for the mean. Independent samples (Part 2).html 165 B
20. Statistics - Hypothesis Testing/3. Null vs Alternative Hypothesis.html 165 B
20. Statistics - Hypothesis Testing/5. Rejection Region and Significance Level.html 165 B
20. Statistics - Hypothesis Testing/7. Type I Error and Type II Error.html 165 B
22. Part 4 Introduction to Python/10. Jupyter's Interface.html 165 B
22. Part 4 Introduction to Python/2. Introduction to Programming.html 165 B
22. Part 4 Introduction to Python/4. Why Python.html 165 B
22. Part 4 Introduction to Python/6. Why Jupyter.html 165 B
23. Python - Variables and Data Types/2. Variables.html 165 B
23. Python - Variables and Data Types/4. Numbers and Boolean Values in Python.html 165 B
23. Python - Variables and Data Types/6. Python Strings.html 165 B
24. Python - Basic Python Syntax/11. Indexing Elements.html 165 B
24. Python - Basic Python Syntax/13. Structuring with Indentation.html 165 B
24. Python - Basic Python Syntax/2. Using Arithmetic Operators in Python.html 165 B
24. Python - Basic Python Syntax/4. The Double Equality Sign.html 165 B
24. Python - Basic Python Syntax/6. How to Reassign Values.html 165 B
24. Python - Basic Python Syntax/8. Add Comments.html 165 B
25. Python - Other Python Operators/2. Comparison Operators.html 165 B
25. Python - Other Python Operators/4. Logical and Identity Operators.html 165 B
26. Python - Conditional Statements/2. The IF Statement.html 165 B
26. Python - Conditional Statements/6. A Note on Boolean Values.html 165 B
27. Python - Python Functions/8. Python Functions.html 165 B
28. Python - Sequences/2. Lists.html 165 B
28. Python - Sequences/4. Using Methods.html 165 B
28. Python - Sequences/8. Dictionaries.html 165 B
29. Python - Iterations/2. For Loops.html 165 B
29. Python - Iterations/5. Lists with the range() Function.html 165 B
3. The Field of Data Science - Connecting the Data Science Disciplines/2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html 165 B
30. Python - Advanced Python Tools/2. Object Oriented Programming.html 165 B
30. Python - Advanced Python Tools/4. Modules and Packages.html 165 B
30. Python - Advanced Python Tools/6. What is the Standard Library.html 165 B
30. Python - Advanced Python Tools/8. Importing Modules in Python.html 165 B
31. Part 5 Advanced Statistical Methods in Python/2. Introduction to Regression Analysis.html 165 B
32. Advanced Statistical Methods - Linear regression with StatsModels/12. How to Interpret the Regression Table.html 165 B
32. Advanced Statistical Methods - Linear regression with StatsModels/14. Decomposition of Variability.html 165 B
32. Advanced Statistical Methods - Linear regression with StatsModels/16. What is the OLS.html 165 B
32. Advanced Statistical Methods - Linear regression with StatsModels/18. R-Squared.html 165 B
32. Advanced Statistical Methods - Linear regression with StatsModels/2. The Linear Regression Model.html 165 B
32. Advanced Statistical Methods - Linear regression with StatsModels/4. Correlation vs Regression.html 165 B
32. Advanced Statistical Methods - Linear regression with StatsModels/6. Geometrical Representation of the Linear Regression Model.html 165 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/10. A1 Linearity.html 165 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/12. A2 No Endogeneity.html 165 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/15. A4 No autocorrelation.html 165 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/17. A5 No Multicollinearity.html 165 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/2. Multiple Linear Regression.html 165 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/4. Adjusted R-Squared.html 165 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/8. OLS Assumptions.html 165 B
4. The Field of Data Science - The Benefits of Each Discipline/2. The Reason behind these Disciplines.html 165 B
40. Part 6 Mathematics/11. Addition and Subtraction of Matrices.html 165 B
40. Part 6 Mathematics/2. What is a Matrix.html 165 B
40. Part 6 Mathematics/4. Scalars and Vectors.html 165 B
40. Part 6 Mathematics/6. Linear Algebra and Geometry.html 165 B
40. Part 6 Mathematics/9. What is a Tensor.html 165 B
41. Part 7 Deep Learning/2. What is Machine Learning.html 165 B
42. Deep Learning - Introduction to Neural Networks/10. The Linear Model with Multiple Inputs.html 165 B
42. Deep Learning - Introduction to Neural Networks/12. The Linear model with Multiple Inputs and Multiple Outputs.html 165 B
42. Deep Learning - Introduction to Neural Networks/14. Graphical Representation of Simple Neural Networks.html 165 B
42. Deep Learning - Introduction to Neural Networks/16. What is the Objective Function.html 165 B
42. Deep Learning - Introduction to Neural Networks/18. Common Objective Functions L2-norm Loss.html 165 B
42. Deep Learning - Introduction to Neural Networks/2. Introduction to Neural Networks.html 165 B
42. Deep Learning - Introduction to Neural Networks/20. Common Objective Functions Cross-Entropy Loss.html 165 B
42. Deep Learning - Introduction to Neural Networks/22. Optimization Algorithm 1-Parameter Gradient Descent.html 165 B
42. Deep Learning - Introduction to Neural Networks/24. Optimization Algorithm n-Parameter Gradient Descent.html 165 B
42. Deep Learning - Introduction to Neural Networks/4. Training the Model.html 165 B
42. Deep Learning - Introduction to Neural Networks/6. Types of Machine Learning.html 165 B
42. Deep Learning - Introduction to Neural Networks/8. The Linear Model.html 165 B
5. The Field of Data Science - Popular Data Science Techniques/11. Techniques for Working with Traditional Methods.html 165 B
5. The Field of Data Science - Popular Data Science Techniques/14. Machine Learning (ML) Techniques.html 165 B
5. The Field of Data Science - Popular Data Science Techniques/16. Types of Machine Learning.html 165 B
5. The Field of Data Science - Popular Data Science Techniques/18. Real Life Examples of Machine Learning (ML).html 165 B
5. The Field of Data Science - Popular Data Science Techniques/2. Techniques for Working with Traditional Data.html 165 B
5. The Field of Data Science - Popular Data Science Techniques/5. Techniques for Working with Big Data.html 165 B
5. The Field of Data Science - Popular Data Science Techniques/8. Business Intelligence (BI) Techniques.html 165 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.11 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html 165 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.2 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html 165 B
56. Software Integration/10. Software Integration - Explained.html 165 B
56. Software Integration/2. What are Data, Servers, Clients, Requests, and Responses.html 165 B
56. Software Integration/4. What are Data Connectivity, APIs, and Endpoints.html 165 B
56. Software Integration/6. Taking a Closer Look at APIs.html 165 B
56. Software Integration/8. Communication between Software Products through Text Files.html 165 B
57. Case Study - What's Next in the Course/4. Introducing the Data Set.html 165 B
6. The Field of Data Science - Popular Data Science Tools/2. Necessary Programming Languages and Software Used in Data Science.html 165 B
7. The Field of Data Science - Careers in Data Science/2. Finding the Job - What to Expect and What to Look for.html 165 B
8. The Field of Data Science - Debunking Common Misconceptions/2. Debunking Common Misconceptions.html 165 B
9. Part 2 Probability/2. The Basic Probability Formula.html 165 B
9. Part 2 Probability/4. Computing Expected Values.html 165 B
9. Part 2 Probability/6. Frequency.html 165 B
9. Part 2 Probability/8. Events and Their Complements.html 165 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.1 Basic NN Example with TensorFlow Exercise 2.3 Solution.html 162 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.2 Basic NN Example with TensorFlow Exercise 2.1 Solution.html 162 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.7 Basic NN Example with TensorFlow Exercise 2.2 Solution.html 162 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.8 Basic NN Example with TensorFlow Exercise 2.4 Solution.html 162 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.1 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html 162 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.5 TensorFlow MNIST 'Time' Solution.html 162 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.9 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html 162 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.3 Basic NN Example with TensorFlow Exercise 3 Solution.html 160 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.4 Basic NN Example with TensorFlow Exercise 1 Solution.html 160 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.6 Basic NN Example with TensorFlow Exercise 4 Solution.html 160 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.8 TensorFlow MNIST '3. Width and Depth' Solution.html 160 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/3.1 TensorFlow MNIST Part 1 with Comments.html 159 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/4.1 TensorFlow MNIST Part 2 with Comments.html 159 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/5.1 TensorFlow MNIST Part 3 with Comments.html 159 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/6.1 TensorFlow MNIST Part 4 with Comments.html 159 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/7.1 TensorFlow MNIST Part 5 with Comments.html 159 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/8.1 TensorFlow MNIST Part 6 with Comments.html 159 B
34. Advanced Statistical Methods - Linear Regression with sklearn/7.1 Multiple Linear Regression with sklearn.html 158 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.7 TensorFlow MNIST 'Around 98% Accuracy' Solution.html 157 B
34. Advanced Statistical Methods - Linear Regression with sklearn/3.2 Simple Linear Regression with sklearn.html 156 B
34. Advanced Statistical Methods - Linear Regression with sklearn/4.1 Simple Linear Regression with sklearn.html 156 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/9.1 Basic NN Example with TensorFlow (Complete).html 156 B
58. Case Study - Preprocessing the 'Absenteeism_data'/32.2 Preprocessing.html 156 B
40. Part 6 Mathematics/14.1 Dot Product Python Notebook.html 154 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.1 Basic NN Example Exercise 3b Solution.html 154 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.3 Basic NN Example Exercise 3a Solution.html 154 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.4 Basic NN Example Exercise 3d Solution.html 154 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.5 Basic NN Example Exercise 3c Solution.html 154 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.5 Basic NN Example with TensorFlow (All Exercises).html 154 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/6.1 Basic NN Example with TensorFlow (Part 1).html 154 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/7.1 Basic NN Example with TensorFlow (Part 2).html 154 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/8.1 Basic NN Example with TensorFlow (Part 3).html 154 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/9.1 TensorFlow MNIST Complete Code with Comments.html 152 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.4 TensorFlow MNIST '2. Depth' Solution.html 150 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10.6 TensorFlow MNIST '1. Width' Solution.html 150 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.10 Basic NN Example Exercise 5 Solution.html 149 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.2 Basic NN Example Exercise 1 Solution.html 149 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.7 Basic NN Example Exercise 4 Solution.html 149 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.8 Basic NN Example Exercise 6 Solution.html 149 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.9 Basic NN Example Exercise 2 Solution.html 149 B
40. Part 6 Mathematics/8.1 Tensors Notebook.html 148 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4.1 Basic NN Example (Part 4).html 145 B
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/11.1 TensorFlow MNIST All Exercises.html 144 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.6 Basic NN Example (All Exercises).html 143 B
58. Case Study - Preprocessing the 'Absenteeism_data'/19. SOLUTION - Using .concat() in Python.html 142 B
58. Case Study - Preprocessing the 'Absenteeism_data'/24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.1 Bais NN Example Part 1.html 136 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2.1 Basic NN Example (Part 2).html 136 B
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3.1 Basic NN Example (Part 3).html 136 B
1. Part 1 Introduction/3.2 Download All Resources.html 134 B
23. Python - Variables and Data Types/1.2 Variables - Resources.html 134 B
23. Python - Variables and Data Types/3.1 Numbers and Boolean Values - Resources.html 134 B
23. Python - Variables and Data Types/5.1 Strings - Resources.html 134 B
24. Python - Basic Python Syntax/1.1 Arithmetic Operators - Resources.html 134 B
24. Python - Basic Python Syntax/10.1 Indexing Elements - Resources.html 134 B
24. Python - Basic Python Syntax/12.1 Structure Your Code with Indentation - Resources.html 134 B
24. Python - Basic Python Syntax/3.1 The Double Equality Sign - Resources.html 134 B
24. Python - Basic Python Syntax/5.1 Reassign Values - Resources.html 134 B
24. Python - Basic Python Syntax/7.1 Add Comments - Resources.html 134 B
24. Python - Basic Python Syntax/9.1 Line Continuation - Resources.html 134 B
25. Python - Other Python Operators/1.1 Comparison Operators - Resources.html 134 B
25. Python - Other Python Operators/3.1 Logical and Identity Operators - Resources.html 134 B
26. Python - Conditional Statements/1.1 Introduction to the If Statement - Resources.html 134 B
26. Python - Conditional Statements/3.1 Add an Else Statement - Resources.html 134 B
26. Python - Conditional Statements/4.1 Else if, for Brief - Elif - Resources.html 134 B
26. Python - Conditional Statements/5.1 A Note on Boolean Values - Resources.html 134 B
27. Python - Python Functions/1.1 Defining a Function in Python - Resources.html 134 B
27. Python - Python Functions/2.1 Creating a Function with a Parameter - Resources.html 134 B
27. Python - Python Functions/3.1 Another Way to Define a Function - Resources.html 134 B
27. Python - Python Functions/4.1 Using a Function in Another Function - Resources.html 134 B
27. Python - Python Functions/5.1 Combining Conditional Statements and Functions - Resources.html 134 B
27. Python - Python Functions/6.1 Creating Functions Containing a Few Arguments - Resources.html 134 B
27. Python - Python Functions/7.1 Notable Built-In Functions in Python - Resources.html 134 B
28. Python - Sequences/1.1 Lists - Resources.html 134 B
28. Python - Sequences/3.1 Help Yourself with Methods - Resources.html 134 B
28. Python - Sequences/5.1 List Slicing - Resources.html 134 B
28. Python - Sequences/6.1 Tuples - Resources.html 134 B
28. Python - Sequences/7.1 Dictionaries - Resources.html 134 B
29. Python - Iterations/1.1 For Loops - Resources.html 134 B
29. Python - Iterations/3.1 While Loops and Incrementing - Resources.html 134 B
29. Python - Iterations/4.1 Create Lists with the range() Function - Resources.html 134 B
29. Python - Iterations/6.1 Use Conditional Statements and Loops Together - Resources.html 134 B
29. Python - Iterations/7.1 All In - Conditional Statements, Functions, and Loops - Resources.html 134 B
29. Python - Iterations/8.1 Iterating over Dictionaries - Resources.html 134 B
32. Advanced Statistical Methods - Linear regression with StatsModels/8.1 First regression in Python.html 134 B
32. Advanced Statistical Methods - Linear regression with StatsModels/9.1 First regression in Python - Exercise.html 134 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/18.1 Dealing with categorical data.html 134 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/19.1 Dealing with categorical data.html 134 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/20.1 Making predictions.html 134 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/3.1 Adjusted R-squared.html 134 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/5.1 Multiple linear regression - exercise.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/10.1 Feature selection.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/11.1 Calculation of P-values.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/12.1 Summary table with p-values.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/13.1 Multiple linear regression - Exercise.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/14.1 Feature scaling.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/15.1 Feature scaling standardization.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/16.1 Predicting with the Standardized Cofficients.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/17.1 Feature scaling - exercise.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/19.1 Train - Test split explained.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/6.1 Simple linear regression with sklearn.html 134 B
34. Advanced Statistical Methods - Linear Regression with sklearn/9.1 Calculating the Adjusted R-Squared.html 134 B
35. Advanced Statistical Methods - Practical Example Linear Regression/1.1 sklearn - Linear Regression - Practical Example (Part 1).html 134 B
35. Advanced Statistical Methods - Practical Example Linear Regression/2.1 sklearn - Linear Regression - Practical Example (Part 2).html 134 B
35. Advanced Statistical Methods - Practical Example Linear Regression/4.1 sklearn - Linear Regression - Practical Example (Part 3).html 134 B
35. Advanced Statistical Methods - Practical Example Linear Regression/5.1 Dummies and VIF - Exercise and Solution.html 134 B
35. Advanced Statistical Methods - Practical Example Linear Regression/6.1 sklearn - Linear Regression - Practical Example (Part 4).html 134 B
35. Advanced Statistical Methods - Practical Example Linear Regression/8.1 sklearn - Linear Regression - Practical Example (Part 5).html 134 B
36. Advanced Statistical Methods - Logistic Regression/10.1 Binary predictors.html 134 B
36. Advanced Statistical Methods - Logistic Regression/11.1 Binary predictors - exercise.html 134 B
36. Advanced Statistical Methods - Logistic Regression/12.1 Accuracy.html 134 B
36. Advanced Statistical Methods - Logistic Regression/13.2 Accuracy of the model - exercise.html 134 B
36. Advanced Statistical Methods - Logistic Regression/15.1 Testing the model.html 134 B
36. Advanced Statistical Methods - Logistic Regression/16.1 Testing the model - exercise.html 134 B
36. Advanced Statistical Methods - Logistic Regression/2.1 A simple example in Python.html 134 B
36. Advanced Statistical Methods - Logistic Regression/4.1 Building a logistic regression.html 134 B
36. Advanced Statistical Methods - Logistic Regression/5.2 Building a logistic regression.html 134 B
36. Advanced Statistical Methods - Logistic Regression/8.1 Understanding logistic regression.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/11.1 Market segmentation.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/12.1 Market segmentation.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/14.2 Exercise - part 1.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/15.3 Exercise - part 2.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/2.1 Example of clustering.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/3.1 A simple example of clustering.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/4.1 Clustering categorical data.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/5.2 Clustering categorical data.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/6.1 How to choose the number of clusters.html 134 B
38. Advanced Statistical Methods - K-Means Clustering/7.2 How to choose the number of clusters.html 134 B
39. Advanced Statistical Methods - Other Types of Clustering/3.1 Heatmaps.html 134 B
44. Deep Learning - TensorFlow 2.0 Introduction/4.1 A note on TensorFlow 2 Syntax.html 134 B
44. Deep Learning - TensorFlow 2.0 Introduction/5.1 Types of File Formats.html 134 B
44. Deep Learning - TensorFlow 2.0 Introduction/6.1 Outlining the Model.html 134 B
44. Deep Learning - TensorFlow 2.0 Introduction/7.1 Interpreting the Result.html 134 B
44. Deep Learning - TensorFlow 2.0 Introduction/8.1 Customizing a TensorFlow 2 Model.html 134 B
44. Deep Learning - TensorFlow 2.0 Introduction/9.1 Basic NN with TensorFlow.html 134 B
50. Deep Learning - Classifying on the MNIST Dataset/10.1 MNIST Learning.html 134 B
50. Deep Learning - Classifying on the MNIST Dataset/11.1 MNIST - Exercises.html 134 B
50. Deep Learning - Classifying on the MNIST Dataset/12.1 MNIST Testing the Model.html 134 B
50. Deep Learning - Classifying on the MNIST Dataset/3.1 MNIST Importing the Relevant Packages.html 134 B
50. Deep Learning - Classifying on the MNIST Dataset/5.1 MNIST Preprocess the Data.html 134 B
50. Deep Learning - Classifying on the MNIST Dataset/7.1 MNIST Preprocess the Data.html 134 B
50. Deep Learning - Classifying on the MNIST Dataset/8.1 MNIST Outline the Model.html 134 B
50. Deep Learning - Classifying on the MNIST Dataset/9.1 MNIST Select the Loss and the Optimizer.html 134 B
51. Deep Learning - Business Case Example/1.2 Business Case Exploring the Dataset.html 134 B
51. Deep Learning - Business Case Example/11.1 Business Case Testing the Model.html 134 B
51. Deep Learning - Business Case Example/12.1 Business Case Final Exercise.html 134 B
51. Deep Learning - Business Case Example/4.1 Business Case Preprocessing the Data.html 134 B
51. Deep Learning - Business Case Example/5.1 Business Case Preprocessing the Data.html 134 B
51. Deep Learning - Business Case Example/7.1 Business Case Load the Preprocessed Data.html 134 B
51. Deep Learning - Business Case Example/8.1 Business Case Learning and Interpreting.html 134 B
51. Deep Learning - Business Case Example/9.1 Business Case Setting an Early Stopping Mechanism.html 134 B
53. Appendix Deep Learning - TensorFlow 1 Introduction/5.1 Actual Introduction to TensorFlow.html 134 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/11.1 TensorFlow Business Case Homework.html 134 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/12.1 TensorFlow Business Case Homework.html 134 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/4.1 Audiobooks Preprocessing.html 134 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/5.1 Preprocessing Exercise.html 134 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/6.1 Creating a Data Provider (Class).html 134 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/7.1 TensorFlow Business Case Model Outline.html 134 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/8.1 TensorFlow Business Case Optimization.html 134 B
55. Appendix Deep Learning - TensorFlow 1 Business Case/9.1 TensorFlow Business Case Interpretation.html 134 B
60. Case Study - Loading the 'absenteeism_module'/1.1 5 Files Needed to Deploy the Model.html 134 B
58. Case Study - Preprocessing the 'Absenteeism_data'/12. EXERCISE - Obtaining Dummies from a Single Feature.html 129 B
58. Case Study - Preprocessing the 'Absenteeism_data'/25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html 117 B
58. Case Study - Preprocessing the 'Absenteeism_data'/13. SOLUTION - Obtaining Dummies from a Single Feature.html 116 B
58. Case Study - Preprocessing the 'Absenteeism_data'/9. SOLUTION - Dropping a Column from a DataFrame in Python.html 113 B
36. Advanced Statistical Methods - Logistic Regression/11. Binary Predictors in a Logistic Regression - Exercise.html 87 B
36. Advanced Statistical Methods - Logistic Regression/13. Calculating the Accuracy of the Model.html 87 B
36. Advanced Statistical Methods - Logistic Regression/16. Testing the Model - Exercise.html 87 B
36. Advanced Statistical Methods - Logistic Regression/5. Building a Logistic Regression - Exercise.html 87 B
36. Advanced Statistical Methods - Logistic Regression/8. Understanding Logistic Regression Tables - Exercise.html 87 B
38. Advanced Statistical Methods - K-Means Clustering/14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 87 B
38. Advanced Statistical Methods - K-Means Clustering/15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 87 B
38. Advanced Statistical Methods - K-Means Clustering/3. A Simple Example of Clustering - Exercise.html 87 B
38. Advanced Statistical Methods - K-Means Clustering/5. Clustering Categorical Data - Exercise.html 87 B
38. Advanced Statistical Methods - K-Means Clustering/7. How to Choose the Number of Clusters - Exercise.html 87 B
15. Statistics - Descriptive Statistics/10. Numerical Variables Exercise.html 81 B
15. Statistics - Descriptive Statistics/13. Histogram Exercise.html 81 B
15. Statistics - Descriptive Statistics/16. Cross Tables and Scatter Plots Exercise.html 81 B
15. Statistics - Descriptive Statistics/18. Mean, Median and Mode Exercise.html 81 B
15. Statistics - Descriptive Statistics/21. Skewness Exercise.html 81 B
15. Statistics - Descriptive Statistics/26. Standard Deviation and Coefficient of Variation Exercise.html 81 B
15. Statistics - Descriptive Statistics/29. Covariance Exercise.html 81 B
15. Statistics - Descriptive Statistics/32. Correlation Coefficient Exercise.html 81 B
15. Statistics - Descriptive Statistics/7. Categorical Variables Exercise.html 81 B
16. Statistics - Practical Example Descriptive Statistics/2. Practical Example Descriptive Statistics Exercise.html 81 B
17. Statistics - Inferential Statistics Fundamentals/8. The Standard Normal Distribution Exercise.html 81 B
18. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Dependent samples Exercise.html 81 B
18. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html 81 B
18. Statistics - Inferential Statistics Confidence Intervals/17. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html 81 B
18. Statistics - Inferential Statistics Confidence Intervals/4. Confidence Intervals; Population Variance Known; z-score; Exercise.html 81 B
18. Statistics - Inferential Statistics Confidence Intervals/9. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html 81 B
19. Statistics - Practical Example Inferential Statistics/2. Practical Example Inferential Statistics Exercise.html 81 B
20. Statistics - Hypothesis Testing/13. Test for the Mean. Population Variance Unknown Exercise.html 81 B
20. Statistics - Hypothesis Testing/15. Test for the Mean. Dependent Samples Exercise.html 81 B
20. Statistics - Hypothesis Testing/17. Test for the mean. Independent samples (Part 1). Exercise.html 81 B
20. Statistics - Hypothesis Testing/20. Test for the mean. Independent samples (Part 2) Exercise.html 81 B
20. Statistics - Hypothesis Testing/9. Test for the Mean. Population Variance Known Exercise.html 81 B
21. Statistics - Practical Example Hypothesis Testing/2. Practical Example Hypothesis Testing Exercise.html 81 B
50. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Preprocess the Data - Scale the Test Data - Exercise.html 79 B
50. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html 79 B
51. Deep Learning - Business Case Example/7. Business Case Load the Preprocessed Data - Exercise.html 79 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/19. Dealing with Categorical Data - Dummy Variables.html 76 B
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/5. Multiple Linear Regression Exercise.html 76 B
34. Advanced Statistical Methods - Linear Regression with sklearn/13. Multiple Linear Regression - Exercise.html 76 B
34. Advanced Statistical Methods - Linear Regression with sklearn/17. Feature Scaling (Standardization) - Exercise.html 76 B
34. Advanced Statistical Methods - Linear Regression with sklearn/6. Simple Linear Regression with sklearn - Exercise.html 76 B
34. Advanced Statistical Methods - Linear Regression with sklearn/9. Calculating the Adjusted R-Squared in sklearn - Exercise.html 76 B
35. Advanced Statistical Methods - Practical Example Linear Regression/5. Dummies and Variance Inflation Factor - Exercise.html 76 B
Download Info
-
Tips
“[FreeAllCourse.Com] Udemy - The Data Science Course 2020 Complete Data Science Bootcamp” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.
-
DMCA Notice and Takedown Procedure
If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.