Download link
File List
-
5. Data Science Environment Setup/8. Windows Environment Setup 2.mp4 227.6 MB
9. Scikit-learn Creating Machine Learning Models/7. Typical scikit-learn Workflow.mp4 190.18 MB
9. Scikit-learn Creating Machine Learning Models/8. Optional Debugging Warnings In Jupyter.mp4 176.13 MB
16. Career Advice + Extra Bits/9. CWD Git + Github.mp4 176.12 MB
9. Scikit-learn Creating Machine Learning Models/38. Tuning Hyperparameters.mp4 175.53 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/32. Training Your Deep Neural Network.mp4 166.6 MB
16. Career Advice + Extra Bits/3. What If I Don't Have Enough Experience.mp4 160.94 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/7. Feature Engineering.mp4 159.14 MB
9. Scikit-learn Creating Machine Learning Models/44. Putting It All Together.mp4 158.35 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/34. Make And Transform Predictons.mp4 154.98 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/21. Turning Data Into Batches 2.mp4 149.38 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/8. Turning Data Into Numbers.mp4 146.17 MB
5. Data Science Environment Setup/5. Mac Environment Setup.mp4 144.39 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/37. Visualizing And Evaluate Model Predictions 2.mp4 143.78 MB
9. Scikit-learn Creating Machine Learning Models/14. Choosing The Right Model For Your Data.mp4 143.26 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/19. Feature Importance.mp4 142.3 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/41. Making Predictions On Test Images.mp4 140.83 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/40. Training Model On Full Dataset.mp4 139.82 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/17. Preproccessing Our Data.mp4 139.3 MB
11. Milestone Project 1 Supervised Learning (Classification)/9. Finding Patterns 3.mp4 137.86 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/5. Exploring Our Data.mp4 137.81 MB
9. Scikit-learn Creating Machine Learning Models/13. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4 136.89 MB
9. Scikit-learn Creating Machine Learning Models/11. Getting Your Data Ready Convert Data To Numbers.mp4 135.02 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/15. Preparing The Images.mp4 133.89 MB
16. Career Advice + Extra Bits/11. Contributing To Open Source.mp4 130.25 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/35. Transform Predictions To Text.mp4 129.87 MB
11. Milestone Project 1 Supervised Learning (Classification)/20. Finding The Most Important Features.mp4 127.49 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/39. Saving And Loading A Trained Model.mp4 126.98 MB
5. Data Science Environment Setup/6. Mac Environment Setup 2.mp4 125.46 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/18. Customizing Your Plots 2.mp4 123.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/22. Visualizing Our Data.mp4 121.99 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25. Building A Deep Learning Model.mp4 121.85 MB
9. Scikit-learn Creating Machine Learning Models/40. Tuning Hyperparameters 3.mp4 121.76 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/42. Submitting Model to Kaggle.mp4 121.34 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/16. Plotting from Pandas DataFrames 7.mp4 119.75 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/36. Visualizing Model Predictions.mp4 119.31 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/43. Making Predictions On Our Images.mp4 119.24 MB
9. Scikit-learn Creating Machine Learning Models/18. Choosing The Right Model For Your Data 3 (Classification).mp4 118.84 MB
16. Career Advice + Extra Bits/10. CWD Git + Github 2.mp4 118.35 MB
9. Scikit-learn Creating Machine Learning Models/45. Putting It All Together 2.mp4 116.85 MB
9. Scikit-learn Creating Machine Learning Models/39. Tuning Hyperparameters 2.mp4 116.77 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/9. Importing TensorFlow 2.mp4 116.76 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/14. Loading Our Data Labels.mp4 114.82 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/38. Visualizing And Evaluate Model Predictions 3.mp4 113.21 MB
16. Career Advice + Extra Bits/12. Contributing To Open Source 2.mp4 113.04 MB
11. Milestone Project 1 Supervised Learning (Classification)/14. Tuning Hyperparameters.mp4 108 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/16. Turning Data Labels Into Numbers.mp4 107.46 MB
6. Pandas Data Analysis/8. Selecting and Viewing Data with Pandas Part 2.mp4 106.5 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/9. Filling Missing Numerical Values.mp4 106.34 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27. Building A Deep Learning Model 3.mp4 105.92 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/26. Building A Deep Learning Model 2.mp4 105.9 MB
11. Milestone Project 1 Supervised Learning (Classification)/4. Step 1~4 Framework Setup.mp4 105.5 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/19. Preprocess Images 2.mp4 105.07 MB
6. Pandas Data Analysis/9. Manipulating Data.mp4 104.99 MB
9. Scikit-learn Creating Machine Learning Models/12. Getting Your Data Ready Handling Missing Values With Pandas.mp4 104.84 MB
17. Learn Python/1. What Is A Programming Language.mp4 104.77 MB
11. Milestone Project 1 Supervised Learning (Classification)/15. Tuning Hyperparameters 2.mp4 104.12 MB
5. Data Science Environment Setup/11. Jupyter Notebook Walkthrough 2.mp4 103.91 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/13. Custom Evaluation Function.mp4 103.34 MB
11. Milestone Project 1 Supervised Learning (Classification)/13. TuningImproving Our Model.mp4 102.78 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/2. Deep Learning and Unstructured Data.mp4 102.04 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/3. Project Environment Setup.mp4 101.27 MB
11. Milestone Project 1 Supervised Learning (Classification)/3. Project Environment Setup.mp4 100.76 MB
11. Milestone Project 1 Supervised Learning (Classification)/8. Finding Patterns 2.mp4 99.92 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/11. Plotting From Pandas DataFrames 2.mp4 98.8 MB
11. Milestone Project 1 Supervised Learning (Classification)/11. Choosing The Right Models.mp4 96.42 MB
9. Scikit-learn Creating Machine Learning Models/24. Evaluating A Machine Learning Model 2 (Cross Validation).mp4 95.97 MB
6. Pandas Data Analysis/4. Series, Data Frames and CSVs.mp4 95.37 MB
9. Scikit-learn Creating Machine Learning Models/36. Evaluating A Model With Scikit-learn Functions.mp4 94.82 MB
17. Learn Python/16. Variables.mp4 93.56 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/14. Reducing Data.mp4 93.47 MB
17. Learn Python/2. Python Interpreter.mp4 93.47 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/17. Customizing Your Plots.mp4 92.21 MB
9. Scikit-learn Creating Machine Learning Models/35. Evaluating A Model With Cross Validation and Scoring Parameter.mp4 91.49 MB
7. NumPy/13. Exercise Nut Butter Store Sales.mp4 91.33 MB
6. Pandas Data Analysis/11. Manipulating Data 3.mp4 91.02 MB
9. Scikit-learn Creating Machine Learning Models/37. Improving A Machine Learning Model.mp4 90.93 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/18. Preprocess Images.mp4 90.1 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/13. Optional Reloading Colab Notebook.mp4 88.66 MB
9. Scikit-learn Creating Machine Learning Models/4. Refresher What Is Machine Learning.mp4 88.27 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/20. Turning Data Into Batches.mp4 87.77 MB
9. Scikit-learn Creating Machine Learning Models/30. Evaluating A Classification Model 6 (Classification Report).mp4 87.24 MB
9. Scikit-learn Creating Machine Learning Models/23. Evaluating A Machine Learning Model (Score).mp4 87.13 MB
9. Scikit-learn Creating Machine Learning Models/15. Choosing The Right Model For Your Data 2 (Regression).mp4 86.92 MB
6. Pandas Data Analysis/10. Manipulating Data 2.mp4 86.53 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/3. Importing And Using Matplotlib.mp4 86.45 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/28. Building A Deep Learning Model 4.mp4 86.3 MB
11. Milestone Project 1 Supervised Learning (Classification)/21. Reviewing The Project.mp4 86.14 MB
7. NumPy/16. Turn Images Into NumPy Arrays.mp4 85.91 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/15. RandomizedSearchCV.mp4 85.83 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/4. Step 1~4 Framework Setup.mp4 85.69 MB
7. NumPy/12. Dot Product vs Element Wise.mp4 83.93 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/12. Splitting Data.mp4 82.68 MB
18. Learn Python Part 2/45. Modules in Python.mp4 82.18 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/4. Anatomy Of A Matplotlib Figure.mp4 82.15 MB
17. Learn Python/5. Python 2 vs Python 3.mp4 82.14 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/15. Plotting from Pandas DataFrames 6.mp4 82.04 MB
7. NumPy/8. Manipulating Arrays.mp4 80.65 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/11. Using A GPU.mp4 80.59 MB
13. Data Engineering/9. Optional OLTP Databases.mp4 79.68 MB
11. Milestone Project 1 Supervised Learning (Classification)/5. Getting Our Tools Ready.mp4 79.36 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/30. Evaluating Our Model.mp4 79.29 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/16. Improving Hyperparameters.mp4 79.29 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/18. Making Predictions.mp4 79.21 MB
7. NumPy/4. NumPy DataTypes and Attributes.mp4 78.99 MB
9. Scikit-learn Creating Machine Learning Models/28. Evaluating A Classification Model 4 (Confusion Matrix).mp4 77.72 MB
1. Introduction/1. Course Outline.mp4 77.26 MB
6. Pandas Data Analysis/6. Describing Data with Pandas.mp4 75.56 MB
9. Scikit-learn Creating Machine Learning Models/6. Scikit-learn Cheatsheet.mp4 75.13 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/12. Plotting from Pandas DataFrames 3.mp4 74.71 MB
18. Learn Python Part 2/2. Conditional Logic.mp4 74.58 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4. Setting Up Google Colab.mp4 74.24 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/33. Evaluating Performance With TensorBoard.mp4 74.18 MB
17. Learn Python/10. Numbers.mp4 72.71 MB
11. Milestone Project 1 Supervised Learning (Classification)/10. Preparing Our Data For Machine Learning.mp4 72.6 MB
18. Learn Python Part 2/48. Packages in Python.mp4 72.42 MB
6. Pandas Data Analysis/7. Selecting and Viewing Data with Pandas.mp4 72.35 MB
11. Milestone Project 1 Supervised Learning (Classification)/17. Evaluating Our Model.mp4 71.6 MB
5. Data Science Environment Setup/12. Jupyter Notebook Walkthrough 3.mp4 71.42 MB
7. NumPy/7. Viewing Arrays and Matrices.mp4 70.64 MB
9. Scikit-learn Creating Machine Learning Models/31. Evaluating A Regression Model 1 (R2 Score).mp4 70.39 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/6. Histograms And Subplots.mp4 69.75 MB
17. Learn Python/26. Built-In Functions + Methods.mp4 69.39 MB
7. NumPy/9. Manipulating Arrays 2.mp4 67.9 MB
18. Learn Python Part 2/36. Pure Functions.mp4 67.36 MB
5. Data Science Environment Setup/10. Jupyter Notebook Walkthrough.mp4 67.35 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/5. Scatter Plot And Bar Plot.mp4 67.03 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/10. Filling Missing Categorical Values.mp4 66.91 MB
11. Milestone Project 1 Supervised Learning (Classification)/6. Exploring Our Data.mp4 66.88 MB
6. Pandas Data Analysis/13. How To Download The Course Assignments.mp4 66.78 MB
7. NumPy/5. Creating NumPy Arrays.mp4 66.77 MB
9. Scikit-learn Creating Machine Learning Models/20. Making Predictions With Our Model.mp4 66.5 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/17. Creating Our Own Validation Set.mp4 66.44 MB
9. Scikit-learn Creating Machine Learning Models/26. Evaluating A Classification Model 2 (ROC Curve).mp4 66.03 MB
11. Milestone Project 1 Supervised Learning (Classification)/19. Evaluating Our Model 3.mp4 64.84 MB
17. Learn Python/48. Sets 2.mp4 64.26 MB
17. Learn Python/3. How To Run Python Code.mp4 63.9 MB
9. Scikit-learn Creating Machine Learning Models/9. Getting Your Data Ready Splitting Your Data.mp4 63.66 MB
9. Scikit-learn Creating Machine Learning Models/29. Evaluating A Classification Model 5 (Confusion Matrix).mp4 63.59 MB
11. Milestone Project 1 Supervised Learning (Classification)/7. Finding Patterns.mp4 63.34 MB
18. Learn Python Part 2/24. return.mp4 63.04 MB
11. Milestone Project 1 Supervised Learning (Classification)/16. Tuning Hyperparameters 3.mp4 63.01 MB
17. Learn Python/34. List Methods.mp4 61.75 MB
3. Machine Learning and Data Science Framework/4. Types of Machine Learning Problems.mp4 60.5 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/9. Plotting From Pandas DataFrames.mp4 60.35 MB
17. Learn Python/12. DEVELOPER FUNDAMENTALS I.mp4 59.71 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/14. Plotting from Pandas DataFrames 5.mp4 56.96 MB
9. Scikit-learn Creating Machine Learning Models/43. Saving And Loading A Model 2.mp4 56.77 MB
9. Scikit-learn Creating Machine Learning Models/19. Fitting A Model To The Data.mp4 56.56 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/11. Fitting A Machine Learning Model.mp4 55.52 MB
11. Milestone Project 1 Supervised Learning (Classification)/12. Experimenting With Machine Learning Models.mp4 55.35 MB
9. Scikit-learn Creating Machine Learning Models/33. Evaluating A Regression Model 3 (MSE).mp4 54.9 MB
9. Scikit-learn Creating Machine Learning Models/21. predict() vs predict_proba().mp4 54.33 MB
7. NumPy/11. Reshape and Transpose.mp4 53.53 MB
18. Learn Python Part 2/41. List Comprehensions.mp4 53.34 MB
18. Learn Python Part 2/47. Optional PyCharm.mp4 53.06 MB
9. Scikit-learn Creating Machine Learning Models/42. Saving And Loading A Model.mp4 52.6 MB
18. Learn Python Part 2/40. reduce().mp4 52.27 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/6. Exploring Our Data 2.mp4 52.04 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/6. Uploading Project Data.mp4 51.98 MB
7. NumPy/6. NumPy Random Seed.mp4 51.92 MB
7. NumPy/10. Standard Deviation and Variance.mp4 51.16 MB
17. Learn Python/30. Exercise Password Checker.mp4 51.09 MB
9. Scikit-learn Creating Machine Learning Models/27. Evaluating A Classification Model 3 (ROC Curve).mp4 50.61 MB
17. Learn Python/28. Exercise Type Conversion.mp4 50.34 MB
18. Learn Python Part 2/19. DEVELOPER FUNDAMENTALS IV.mp4 50.22 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/23. Preparing Our Inputs and Outputs.mp4 50.07 MB
17. Learn Python/32. List Slicing.mp4 49.86 MB
18. Learn Python Part 2/18. Our First GUI.mp4 49.63 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/19. Saving And Sharing Your Plots.mp4 49.52 MB
17. Learn Python/23. Formatted Strings.mp4 49.25 MB
17. Learn Python/24. String Indexes.mp4 49.15 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/13. Plotting from Pandas DataFrames 4.mp4 49 MB
18. Learn Python Part 2/21. Functions.mp4 48.6 MB
18. Learn Python Part 2/49. Different Ways To Import.mp4 47.96 MB
5. Data Science Environment Setup/7. Windows Environment Setup.mp4 47.92 MB
17. Learn Python/4. Our First Python Program.mp4 47.2 MB
18. Learn Python Part 2/8. Exercise Logical Operators.mp4 46.62 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/12. Optional GPU and Google Colab.mp4 45.88 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/29. Summarizing Our Model.mp4 45.44 MB
9. Scikit-learn Creating Machine Learning Models/22. Making Predictions With Our Model (Regression).mp4 44.91 MB
3. Machine Learning and Data Science Framework/11. Modelling - Comparison.mp4 44.88 MB
18. Learn Python Part 2/11. Iterables.mp4 43.2 MB
18. Learn Python Part 2/29. args and kwargs.mp4 43.02 MB
18. Learn Python Part 2/4. Truthy vs Falsey.mp4 42.82 MB
2. Machine Learning 101/3. Exercise Machine Learning Playground.mp4 42.59 MB
17. Learn Python/44. Dictionary Methods 2.mp4 42.39 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/7. Setting Up Our Data.mp4 42.26 MB
13. Data Engineering/2. What Is Data.mp4 42.22 MB
17. Learn Python/11. Math Functions.mp4 41.82 MB
11. Milestone Project 1 Supervised Learning (Classification)/18. Evaluating Our Model 2.mp4 41.53 MB
9. Scikit-learn Creating Machine Learning Models/2. Scikit-learn Introduction.mp4 40.63 MB
17. Learn Python/37. Common List Patterns.mp4 40.46 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/5. Google Colab Workspace.mp4 39.63 MB
17. Learn Python/7. Learning Python.mp4 38.52 MB
18. Learn Python Part 2/37. map().mp4 38.38 MB
18. Learn Python Part 2/23. Default Parameters and Keyword Arguments.mp4 38.14 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/7. Subplots Option 2.mp4 38.09 MB
18. Learn Python Part 2/32. Scope Rules.mp4 37.68 MB
17. Learn Python/47. Sets.mp4 36.98 MB
3. Machine Learning and Data Science Framework/7. Features In Data.mp4 36.78 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/31. Preventing Overfitting.mp4 36.51 MB
18. Learn Python Part 2/33. global Keyword.mp4 36.5 MB
18. Learn Python Part 2/42. Set Comprehensions.mp4 35.37 MB
11. Milestone Project 1 Supervised Learning (Classification)/2. Project Overview.mp4 34.44 MB
18. Learn Python Part 2/10. For Loops.mp4 34.31 MB
18. Learn Python Part 2/9. is vs ==.mp4 33.57 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/2. Project Overview.mp4 32.94 MB
7. NumPy/15. Sorting Arrays.mp4 32.83 MB
17. Learn Python/40. Dictionaries.mp4 32.7 MB
13. Data Engineering/7. Types Of Databases.mp4 32.55 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/2. Matplotlib Introduction.mp4 31.51 MB
9. Scikit-learn Creating Machine Learning Models/25. Evaluating A Classification Model 1 (Accuracy).mp4 31.41 MB
17. Learn Python/19. Strings.mp4 30.98 MB
18. Learn Python Part 2/26. Methods vs Functions.mp4 30.69 MB
5. Data Science Environment Setup/4. Conda Environments.mp4 30.56 MB
2. Machine Learning 101/4. How Did We Get Here.mp4 30.5 MB
3. Machine Learning and Data Science Framework/5. Types of Data.mp4 29.32 MB
17. Learn Python/29. DEVELOPER FUNDAMENTALS II.mp4 29.25 MB
17. Learn Python/8. Python Data Types.mp4 28.85 MB
9. Scikit-learn Creating Machine Learning Models/32. Evaluating A Regression Model 2 (MAE).mp4 28.52 MB
18. Learn Python Part 2/7. Logical Operators.mp4 28.33 MB
2. Machine Learning 101/1. What Is Machine Learning.mp4 28.33 MB
18. Learn Python Part 2/13. range().mp4 28.32 MB
18. Learn Python Part 2/15. While Loops.mp4 28.32 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/10. Optional TensorFlow 2.0 Default Issue.mp4 28.1 MB
18. Learn Python Part 2/3. Indentation In Python.mp4 28.02 MB
1. Introduction/4. Your First Day.mp4 27.92 MB
17. Learn Python/36. List Methods 3.mp4 27.66 MB
3. Machine Learning and Data Science Framework/8. Modelling - Splitting Data.mp4 27.51 MB
6. Pandas Data Analysis/3. Pandas Introduction.mp4 27.44 MB
17. Learn Python/35. List Methods 2.mp4 27.4 MB
3. Machine Learning and Data Science Framework/13. Tools We Will Use.mp4 27.33 MB
17. Learn Python/43. Dictionary Methods.mp4 27.16 MB
7. NumPy/2. NumPy Introduction.mp4 26.84 MB
17. Learn Python/41. DEVELOPER FUNDAMENTALS III.mp4 26.63 MB
7. NumPy/14. Comparison Operators.mp4 26.37 MB
17. Learn Python/6. Exercise How Does Python Work.mp4 25.96 MB
18. Learn Python Part 2/16. While Loops 2.mp4 25.93 MB
17. Learn Python/45. Tuples.mp4 25.65 MB
2. Machine Learning 101/8. What Is Machine Learning Round 2.mp4 25.51 MB
18. Learn Python Part 2/14. enumerate().mp4 24.8 MB
13. Data Engineering/5. What Is A Data Engineer 3.mp4 24.29 MB
13. Data Engineering/4. What Is A Data Engineer 2.mp4 24.23 MB
18. Learn Python Part 2/38. filter().mp4 23.55 MB
3. Machine Learning and Data Science Framework/3. 6 Step Machine Learning Framework.mp4 23.46 MB
3. Machine Learning and Data Science Framework/9. Modelling - Picking the Model.mp4 23.24 MB
17. Learn Python/22. Escape Sequences.mp4 23.15 MB
18. Learn Python Part 2/22. Parameters and Arguments.mp4 23.14 MB
2. Machine Learning 101/6. Types of Machine Learning.mp4 22.75 MB
18. Learn Python Part 2/17. break, continue, pass.mp4 22.21 MB
18. Learn Python Part 2/43. Exercise Comprehensions.mp4 21.96 MB
17. Learn Python/31. Lists.mp4 21.96 MB
17. Learn Python/15. Optional bin() and complex.mp4 21.9 MB
18. Learn Python Part 2/30. Exercise Functions.mp4 21.85 MB
3. Machine Learning and Data Science Framework/12. Experimentation.mp4 21.33 MB
18. Learn Python Part 2/39. zip().mp4 21.27 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/8. Setting Up Our Data 2.mp4 20.87 MB
17. Learn Python/25. Immutability.mp4 20.8 MB
17. Learn Python/42. Dictionary Keys.mp4 20.37 MB
18. Learn Python Part 2/1. Breaking The Flow.mp4 20.33 MB
18. Learn Python Part 2/20. Exercise Find Duplicates.mp4 20.25 MB
18. Learn Python Part 2/31. Scope.mp4 20.15 MB
18. Learn Python Part 2/5. Ternary Operator.mp4 19.71 MB
2. Machine Learning 101/2. AIMachine LearningData Science.mp4 19.67 MB
18. Learn Python Part 2/28. Clean Code.mp4 19.66 MB
2. Machine Learning 101/5. Exercise YouTube Recommendation Engine.mp4 19.43 MB
18. Learn Python Part 2/6. Short Circuiting.mp4 19.4 MB
5. Data Science Environment Setup/2. Introducing Our Tools.mp4 19.29 MB
13. Data Engineering/13. Kafka and Stream Processing.mp4 19.24 MB
18. Learn Python Part 2/35. Why Do We Need Scope.mp4 19.18 MB
17. Learn Python/33. Matrix.mp4 19.15 MB
17. Learn Python/21. Type Conversion.mp4 18.99 MB
18. Learn Python Part 2/34. nonlocal Keyword.mp4 18.25 MB
3. Machine Learning and Data Science Framework/6. Types of Evaluation.mp4 17.75 MB
18. Learn Python Part 2/27. Docstrings.mp4 17.33 MB
17. Learn Python/46. Tuples 2.mp4 17 MB
9. Scikit-learn Creating Machine Learning Models/41. Quick Tip Correlation Analysis.mp4 16.92 MB
17. Learn Python/27. Booleans.mp4 16.55 MB
9. Scikit-learn Creating Machine Learning Models/10. Quick Tip Clean, Transform, Reduce.mp4 16.53 MB
18. Learn Python Part 2/12. Exercise Tricky Counter.mp4 16.39 MB
3. Machine Learning and Data Science Framework/10. Modelling - Tuning.mp4 15.99 MB
16. Career Advice + Extra Bits/7. JTS Start With Why.mp4 15.43 MB
17. Learn Python/18. Augmented Assignment Operator.mp4 15.32 MB
13. Data Engineering/3. What Is A Data Engineer.mp4 15.16 MB
13. Data Engineering/6. What Is A Data Engineer 4.mp4 14.93 MB
17. Learn Python/13. Operator Precedence.mp4 14.43 MB
17. Learn Python/38. List Unpacking.mp4 13.86 MB
13. Data Engineering/1. Data Engineering Introduction.mp4 13.5 MB
3. Machine Learning and Data Science Framework/1. Section Overview.mp4 13.35 MB
7. NumPy/1. Section Overview.mp4 13.33 MB
5. Data Science Environment Setup/3. What is Conda.mp4 12.48 MB
9. Scikit-learn Creating Machine Learning Models/1. Section Overview.mp4 12.46 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/8. Quick Tip Data Visualizations.mp4 12.25 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/1. Section Overview.mp4 12.2 MB
3. Machine Learning and Data Science Framework/2. Introducing Our Framework.mp4 11.38 MB
16. Career Advice + Extra Bits/6. JTS Learn to Learn.mp4 11.14 MB
20. Where To Go From Here/2. Thank You.mp4 11.11 MB
9. Scikit-learn Creating Machine Learning Models/17. Quick Tip How ML Algorithms Work.mp4 11.07 MB
17. Learn Python/17. Expressions vs Statements.mp4 10.98 MB
15. UPLOADED BY FEB 14th Storytelling + Communication How To Present Your Projects/1. Section Overview.mp4 10.92 MB
6. Pandas Data Analysis/1. Section Overview.mp4 10.87 MB
11. Milestone Project 1 Supervised Learning (Classification)/1. Section Overview.mp4 10.19 MB
13. Data Engineering/11. Hadoop, HDFS and MapReduce.mp4 10.1 MB
4. The 2 Paths/1. The 2 Paths.mp4 9.75 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/1. Section Overview.mp4 8.95 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/1. Section Overview.mp4 8.6 MB
17. Learn Python/39. None.mp4 7.93 MB
17. Learn Python/20. String Concatenation.mp4 7.34 MB
7. NumPy/16.1 numpy-images.zip.zip 7.27 MB
5. Data Science Environment Setup/1. Section Overview.mp4 6.03 MB
13. Data Engineering/12. Apache Spark and Apache Flink.mp4 5.76 MB
2. Machine Learning 101/9. Section Review.mp4 5.57 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/4.2 matplotlib-anatomy-of-a-plot-with-code.png.png 654.77 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/4.1 matplotlib-anatomy-of-a-plot.png.png 369.39 KB
6. Pandas Data Analysis/10.1 pandas-anatomy-of-a-dataframe.png.png 333.24 KB
6. Pandas Data Analysis/4.1 pandas-anatomy-of-a-dataframe.png.png 333.24 KB
5. Data Science Environment Setup/3.4 conda-cheatsheet.pdf.pdf 201.29 KB
9. Scikit-learn Creating Machine Learning Models/7. Typical scikit-learn Workflow.srt 31.71 KB
5. Data Science Environment Setup/8. Windows Environment Setup 2.srt 31.61 KB
9. Scikit-learn Creating Machine Learning Models/38. Tuning Hyperparameters.srt 30.54 KB
6. Pandas Data Analysis/9.1 car-sales-extended-missing-data.csv.csv 30.2 KB
9. Scikit-learn Creating Machine Learning Models/44. Putting It All Together.srt 26.43 KB
9. Scikit-learn Creating Machine Learning Models/8. Optional Debugging Warnings In Jupyter.srt 25.51 KB
5. Data Science Environment Setup/5. Mac Environment Setup.srt 23.93 KB
9. Scikit-learn Creating Machine Learning Models/13. Getting Your Data Ready Handling Missing Values With Scikit-learn.srt 23.13 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/32. Training Your Deep Neural Network.srt 23.07 KB
9. Scikit-learn Creating Machine Learning Models/11. Getting Your Data Ready Convert Data To Numbers.srt 22.71 KB
5. Data Science Environment Setup/11. Jupyter Notebook Walkthrough 2.srt 22.48 KB
11. Milestone Project 1 Supervised Learning (Classification)/20. Finding The Most Important Features.srt 22.33 KB
11. Milestone Project 1 Supervised Learning (Classification)/8. Finding Patterns 2.srt 22.32 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/8. Turning Data Into Numbers.srt 22.32 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/7. Feature Engineering.srt 22.13 KB
9. Scikit-learn Creating Machine Learning Models/14. Choosing The Right Model For Your Data.srt 21.38 KB
16. Career Advice + Extra Bits/9. CWD Git + Github.srt 21.17 KB
5. Data Science Environment Setup/6. Mac Environment Setup 2.srt 20.69 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/2. Deep Learning and Unstructured Data.srt 20.2 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/21. Turning Data Into Batches 2.srt 20.15 KB
16. Career Advice + Extra Bits/3. What If I Don't Have Enough Experience.srt 19.98 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/5. Exploring Our Data.srt 19.97 KB
7. NumPy/4. NumPy DataTypes and Attributes.srt 19.19 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/34. Make And Transform Predictons.srt 19.18 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/40. Training Model On Full Dataset.srt 19.17 KB
11. Milestone Project 1 Supervised Learning (Classification)/9. Finding Patterns 3.srt 18.88 KB
9. Scikit-learn Creating Machine Learning Models/40. Tuning Hyperparameters 3.srt 18.78 KB
16. Career Advice + Extra Bits/10. CWD Git + Github 2.srt 18.25 KB
6. Pandas Data Analysis/9. Manipulating Data.srt 18.07 KB
9. Scikit-learn Creating Machine Learning Models/35. Evaluating A Model With Cross Validation and Scoring Parameter.srt 17.96 KB
6. Pandas Data Analysis/8. Selecting and Viewing Data with Pandas Part 2.srt 17.92 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/17. Preproccessing Our Data.srt 17.8 KB
11. Milestone Project 1 Supervised Learning (Classification)/13. TuningImproving Our Model.srt 17.64 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/37. Visualizing And Evaluate Model Predictions 2.srt 17.64 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/35. Transform Predictions To Text.srt 17.58 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/19. Feature Importance.srt 17.26 KB
9. Scikit-learn Creating Machine Learning Models/24. Evaluating A Machine Learning Model 2 (Cross Validation).srt 17.25 KB
16. Career Advice + Extra Bits/11. Contributing To Open Source.srt 17.13 KB
9. Scikit-learn Creating Machine Learning Models/18. Choosing The Right Model For Your Data 3 (Classification).srt 17.13 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/36. Visualizing Model Predictions.srt 17.02 KB
9. Scikit-learn Creating Machine Learning Models/39. Tuning Hyperparameters 2.srt 16.97 KB
7. NumPy/13. Exercise Nut Butter Store Sales.srt 16.96 KB
9. Scikit-learn Creating Machine Learning Models/12. Getting Your Data Ready Handling Missing Values With Pandas.srt 16.94 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/9. Filling Missing Numerical Values.srt 16.94 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/39. Saving And Loading A Trained Model.srt 16.85 KB
6. Pandas Data Analysis/4. Series, Data Frames and CSVs.srt 16.82 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/9. Importing TensorFlow 2.srt 16.79 KB
11. Milestone Project 1 Supervised Learning (Classification)/4. Step 1~4 Framework Setup.srt 16.6 KB
9. Scikit-learn Creating Machine Learning Models/36. Evaluating A Model With Scikit-learn Functions.srt 16.32 KB
7. NumPy/8. Manipulating Arrays.srt 16.17 KB
9. Scikit-learn Creating Machine Learning Models/45. Putting It All Together 2.srt 16.11 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/13. Custom Evaluation Function.srt 16.11 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/14. Loading Our Data Labels.srt 16.08 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/3. Importing And Using Matplotlib.srt 16.05 KB
17. Learn Python/16. Variables.srt 16.04 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25. Building A Deep Learning Model.srt 15.92 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/3. Project Environment Setup.srt 15.91 KB
11. Milestone Project 1 Supervised Learning (Classification)/14. Tuning Hyperparameters.srt 15.67 KB
18. Learn Python Part 2/2. Conditional Logic.srt 15.66 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/22. Visualizing Our Data.srt 15.66 KB
7. NumPy/12. Dot Product vs Element Wise.srt 15.34 KB
5. Data Science Environment Setup/10. Jupyter Notebook Walkthrough.srt 15.14 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/15. Preparing The Images.srt 15.12 KB
11. Milestone Project 1 Supervised Learning (Classification)/17. Evaluating Our Model.srt 15.11 KB
9. Scikit-learn Creating Machine Learning Models/28. Evaluating A Classification Model 4 (Confusion Matrix).srt 15.11 KB
11. Milestone Project 1 Supervised Learning (Classification)/15. Tuning Hyperparameters 2.srt 15.1 KB
18. Learn Python Part 2/24. return.srt 14.97 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/16. Plotting from Pandas DataFrames 7.srt 14.95 KB
9. Scikit-learn Creating Machine Learning Models/37. Improving A Machine Learning Model.srt 14.86 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/5. Scatter Plot And Bar Plot.srt 14.67 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/14. Reducing Data.srt 14.62 KB
6. Pandas Data Analysis/7. Selecting and Viewing Data with Pandas.srt 14.59 KB
9. Scikit-learn Creating Machine Learning Models/30. Evaluating A Classification Model 6 (Classification Report).srt 14.56 KB
11. Milestone Project 1 Supervised Learning (Classification)/3. Project Environment Setup.srt 14.39 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/4. Anatomy Of A Matplotlib Figure.srt 14.16 KB
3. Machine Learning and Data Science Framework/4. Types of Machine Learning Problems.srt 13.98 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/17. Customizing Your Plots.srt 13.95 KB
6. Pandas Data Analysis/10. Manipulating Data 2.srt 13.85 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/38. Visualizing And Evaluate Model Predictions 3.srt 13.82 KB
11. Milestone Project 1 Supervised Learning (Classification)/21. Reviewing The Project.srt 13.81 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/16. Turning Data Labels Into Numbers.srt 13.76 KB
6. Pandas Data Analysis/11. Manipulating Data 3.srt 13.71 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/11. Plotting From Pandas DataFrames 2.srt 13.63 KB
6. Pandas Data Analysis/6. Describing Data with Pandas.srt 13.58 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/12. Splitting Data.srt 13.51 KB
11. Milestone Project 1 Supervised Learning (Classification)/7. Finding Patterns.srt 13.39 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/18. Customizing Your Plots 2.srt 13.29 KB
3. Machine Learning and Data Science Framework/11. Modelling - Comparison.srt 13.09 KB
11. Milestone Project 1 Supervised Learning (Classification)/11. Choosing The Right Models.srt 12.97 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/18. Preprocess Images.srt 12.93 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/19. Preprocess Images 2.srt 12.89 KB
7. NumPy/7. Viewing Arrays and Matrices.srt 12.89 KB
9. Scikit-learn Creating Machine Learning Models/23. Evaluating A Machine Learning Model (Score).srt 12.86 KB
11. Milestone Project 1 Supervised Learning (Classification)/5. Getting Our Tools Ready.srt 12.78 KB
18. Learn Python Part 2/45. Modules in Python.srt 12.67 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/15. RandomizedSearchCV.srt 12.65 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/26. Building A Deep Learning Model 2.srt 12.54 KB
18. Learn Python Part 2/48. Packages in Python.srt 12.45 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/6. Histograms And Subplots.srt 12.44 KB
7. NumPy/5. Creating NumPy Arrays.srt 12.44 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/4. Step 1~4 Framework Setup.srt 12.44 KB
9. Scikit-learn Creating Machine Learning Models/26. Evaluating A Classification Model 2 (ROC Curve).srt 12.28 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/11. Using A GPU.srt 12.11 KB
13. Data Engineering/9. Optional OLTP Databases.srt 12.11 KB
9. Scikit-learn Creating Machine Learning Models/20. Making Predictions With Our Model.srt 12.08 KB
9. Scikit-learn Creating Machine Learning Models/9. Getting Your Data Ready Splitting Your Data.srt 12.08 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/28. Building A Deep Learning Model 4.srt 12.02 KB
11. Milestone Project 1 Supervised Learning (Classification)/10. Preparing Our Data For Machine Learning.srt 12.02 KB
9. Scikit-learn Creating Machine Learning Models/31. Evaluating A Regression Model 1 (R2 Score).srt 12.01 KB
9. Scikit-learn Creating Machine Learning Models/15. Choosing The Right Model For Your Data 2 (Regression).srt 11.98 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/14. Plotting from Pandas DataFrames 5.srt 11.63 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/20. Turning Data Into Batches.srt 11.61 KB
9. Scikit-learn Creating Machine Learning Models/21. predict() vs predict_proba().srt 11.56 KB
11. Milestone Project 1 Supervised Learning (Classification)/19. Evaluating Our Model 3.srt 11.55 KB
7. NumPy/9. Manipulating Arrays 2.srt 11.49 KB
5. Data Science Environment Setup/12. Jupyter Notebook Walkthrough 3.srt 11.49 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/12. Plotting from Pandas DataFrames 3.srt 11.46 KB
11. Milestone Project 1 Supervised Learning (Classification)/6. Exploring Our Data.srt 11.4 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/18. Making Predictions.srt 11.37 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/17. Creating Our Own Validation Set.srt 11.32 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27. Building A Deep Learning Model 3.srt 11.2 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/10. Filling Missing Categorical Values.srt 11.2 KB
9. Scikit-learn Creating Machine Learning Models/29. Evaluating A Classification Model 5 (Confusion Matrix).srt 11.2 KB
17. Learn Python/10. Numbers.srt 11.13 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/15. Plotting from Pandas DataFrames 6.srt 11.08 KB
11. Milestone Project 1 Supervised Learning (Classification)/6.1 heart-disease.csv.csv 11.06 KB
5. Data Science Environment Setup/10.3 heart-disease.csv.csv 11.06 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/13.1 heart-disease.csv.csv 11.06 KB
6. Pandas Data Analysis/13. How To Download The Course Assignments.srt 11.06 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/16. Improving Hyperparameters.srt 11.03 KB
17. Learn Python/34. List Methods.srt 10.75 KB
9. Scikit-learn Creating Machine Learning Models/2. Scikit-learn Introduction.srt 10.6 KB
18. Learn Python Part 2/47. Optional PyCharm.srt 10.51 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/11. Fitting A Machine Learning Model.srt 10.47 KB
7. NumPy/16. Turn Images Into NumPy Arrays.srt 10.42 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/30. Evaluating Our Model.srt 10.42 KB
18. Learn Python Part 2/18. Our First GUI.srt 10.37 KB
17. Learn Python/26. Built-In Functions + Methods.srt 10.27 KB
16. Career Advice + Extra Bits/12. Contributing To Open Source 2.srt 10.18 KB
9. Scikit-learn Creating Machine Learning Models/6. Scikit-learn Cheatsheet.srt 10.08 KB
18. Learn Python Part 2/36. Pure Functions.srt 10.06 KB
9. Scikit-learn Creating Machine Learning Models/27. Evaluating A Classification Model 3 (ROC Curve).srt 10.04 KB
11. Milestone Project 1 Supervised Learning (Classification)/2. Project Overview.srt 10.02 KB
11. Milestone Project 1 Supervised Learning (Classification)/16. Tuning Hyperparameters 3.srt 9.92 KB
9. Scikit-learn Creating Machine Learning Models/42. Saving And Loading A Model.srt 9.85 KB
7. NumPy/6. NumPy Random Seed.srt 9.72 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4. Setting Up Google Colab.srt 9.64 KB
11. Milestone Project 1 Supervised Learning (Classification)/12. Experimenting With Machine Learning Models.srt 9.63 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/33. Evaluating Performance With TensorBoard.srt 9.57 KB
7. NumPy/11. Reshape and Transpose.srt 9.53 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/13. Plotting from Pandas DataFrames 4.srt 9.41 KB
18. Learn Python Part 2/41. List Comprehensions.srt 9.38 KB
7. NumPy/10. Standard Deviation and Variance.srt 9.35 KB
9. Scikit-learn Creating Machine Learning Models/19. Fitting A Model To The Data.srt 9.33 KB
17. Learn Python/48. Sets 2.srt 9.24 KB
9. Scikit-learn Creating Machine Learning Models/33. Evaluating A Regression Model 3 (MSE).srt 9.23 KB
17. Learn Python/24. String Indexes.srt 9.21 KB
18. Learn Python Part 2/21. Functions.srt 9.2 KB
1. Introduction/1. Course Outline.srt 9.17 KB
9. Scikit-learn Creating Machine Learning Models/22. Making Predictions With Our Model (Regression).srt 9.13 KB
17. Learn Python/4. Our First Python Program.srt 9.03 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/9. Plotting From Pandas DataFrames.srt 9.02 KB
9. Scikit-learn Creating Machine Learning Models/43. Saving And Loading A Model 2.srt 8.98 KB
17. Learn Python/23. Formatted Strings.srt 8.84 KB
7. NumPy/15. Sorting Arrays.srt 8.8 KB
2. Machine Learning 101/1. What Is Machine Learning.srt 8.67 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/6. Uploading Project Data.srt 8.64 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/6. Exploring Our Data 2.srt 8.6 KB
17. Learn Python/28. Exercise Type Conversion.srt 8.58 KB
17. Learn Python/32. List Slicing.srt 8.5 KB
18. Learn Python Part 2/32. Scope Rules.srt 8.48 KB
17. Learn Python/47. Sets.srt 8.43 KB
18. Learn Python Part 2/8. Exercise Logical Operators.srt 8.4 KB
18. Learn Python Part 2/40. reduce().srt 8.39 KB
13. Data Engineering/7. Types Of Databases.srt 8.37 KB
17. Learn Python/2. Python Interpreter.srt 8.3 KB
17. Learn Python/5. Python 2 vs Python 3.srt 8.17 KB
18. Learn Python Part 2/9. is vs ==.srt 8.12 KB
18. Learn Python Part 2/7. Logical Operators.srt 8.1 KB
2. Machine Learning 101/3. Exercise Machine Learning Playground.srt 8.09 KB
18. Learn Python Part 2/29. args and kwargs.srt 8.09 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/2. Matplotlib Introduction.srt 8.03 KB
17. Learn Python/30. Exercise Password Checker.srt 7.89 KB
18. Learn Python Part 2/19. DEVELOPER FUNDAMENTALS IV.srt 7.82 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/23. Preparing Our Inputs and Outputs.srt 7.78 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/13. Optional Reloading Colab Notebook.srt 7.77 KB
3. Machine Learning and Data Science Framework/8. Modelling - Splitting Data.srt 7.71 KB
5. Data Science Environment Setup/7. Windows Environment Setup.srt 7.62 KB
13. Data Engineering/2. What Is Data.srt 7.62 KB
18. Learn Python Part 2/10. For Loops.srt 7.53 KB
7. NumPy/2. NumPy Introduction.srt 7.5 KB
18. Learn Python Part 2/49. Different Ways To Import.srt 7.49 KB
11. Milestone Project 1 Supervised Learning (Classification)/18. Evaluating Our Model 2.srt 7.41 KB
18. Learn Python Part 2/15. While Loops.srt 7.36 KB
17. Learn Python/44. Dictionary Methods 2.srt 7.14 KB
9. Scikit-learn Creating Machine Learning Models/34. Machine Learning Model Evaluation.html 7.12 KB
17. Learn Python/40. Dictionaries.srt 7.09 KB
2. Machine Learning 101/4. How Did We Get Here.srt 7.07 KB
17. Learn Python/1. What Is A Programming Language.srt 7.04 KB
18. Learn Python Part 2/11. Iterables.srt 6.85 KB
3. Machine Learning and Data Science Framework/7. Features In Data.srt 6.75 KB
18. Learn Python Part 2/33. global Keyword.srt 6.67 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/2. Project Overview.srt 6.66 KB
3. Machine Learning and Data Science Framework/3. 6 Step Machine Learning Framework.srt 6.63 KB
18. Learn Python Part 2/42. Set Comprehensions.srt 6.58 KB
3. Machine Learning and Data Science Framework/5. Types of Data.srt 6.52 KB
17. Learn Python/3. How To Run Python Code.srt 6.46 KB
9. Scikit-learn Creating Machine Learning Models/10. Quick Tip Clean, Transform, Reduce.srt 6.42 KB
18. Learn Python Part 2/16. While Loops 2.srt 6.42 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/7. Subplots Option 2.srt 6.4 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/7. Setting Up Our Data.srt 6.38 KB
2. Machine Learning 101/2. AIMachine LearningData Science.srt 6.36 KB
9. Scikit-learn Creating Machine Learning Models/4. Refresher What Is Machine Learning.srt 6.33 KB
13. Data Engineering/4. What Is A Data Engineer 2.srt 6.33 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/5. Google Colab Workspace.srt 6.32 KB
17. Learn Python/19. Strings.srt 6.29 KB
18. Learn Python Part 2/37. map().srt 6.29 KB
3. Machine Learning and Data Science Framework/9. Modelling - Picking the Model.srt 6.21 KB
5. Data Science Environment Setup/4. Conda Environments.srt 6.15 KB
2. Machine Learning 101/8. What Is Machine Learning Round 2.srt 6.07 KB
3. Machine Learning and Data Science Framework/13. Tools We Will Use.srt 5.99 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/12. Optional GPU and Google Colab.srt 5.99 KB
18. Learn Python Part 2/4. Truthy vs Falsey.srt 5.99 KB
18. Learn Python Part 2/23. Default Parameters and Keyword Arguments.srt 5.98 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/29. Summarizing Our Model.srt 5.98 KB
9. Scikit-learn Creating Machine Learning Models/25. Evaluating A Classification Model 1 (Accuracy).srt 5.87 KB
18. Learn Python Part 2/13. range().srt 5.86 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/19. Saving And Sharing Your Plots.srt 5.83 KB
17. Learn Python/37. Common List Patterns.srt 5.83 KB
9. Scikit-learn Creating Machine Learning Models/32. Evaluating A Regression Model 2 (MAE).srt 5.7 KB
17. Learn Python/45. Tuples.srt 5.69 KB
2. Machine Learning 101/5. Exercise YouTube Recommendation Engine.srt 5.65 KB
17. Learn Python/31. Lists.srt 5.57 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/31. Preventing Overfitting.srt 5.54 KB
17. Learn Python/11. Math Functions.srt 5.43 KB
13. Data Engineering/5. What Is A Data Engineer 3.srt 5.41 KB
18. Learn Python Part 2/28. Clean Code.srt 5.36 KB
17. Learn Python/29. DEVELOPER FUNDAMENTALS II.srt 5.3 KB
18. Learn Python Part 2/3. Indentation In Python.srt 5.27 KB
2. Machine Learning 101/6. Types of Machine Learning.srt 5.27 KB
1. Introduction/4. Your First Day.srt 5.27 KB
17. Learn Python/43. Dictionary Methods.srt 5.26 KB
7. NumPy/14. Comparison Operators.srt 5.26 KB
18. Learn Python Part 2/17. break, continue, pass.srt 5.25 KB
18. Learn Python Part 2/26. Methods vs Functions.srt 5.25 KB
17. Learn Python/12. DEVELOPER FUNDAMENTALS I.srt 5.22 KB
17. Learn Python/8. Python Data Types.srt 5.22 KB
18. Learn Python Part 2/38. filter().srt 5.05 KB
13. Data Engineering/13. Kafka and Stream Processing.srt 5.05 KB
17. Learn Python/36. List Methods 3.srt 5.01 KB
17. Learn Python/22. Escape Sequences.srt 5.01 KB
3. Machine Learning and Data Science Framework/12. Experimentation.srt 4.98 KB
18. Learn Python Part 2/43. Exercise Comprehensions.srt 4.94 KB
13. Data Engineering/3. What Is A Data Engineer.srt 4.9 KB
18. Learn Python Part 2/22. Parameters and Arguments.srt 4.88 KB
3. Machine Learning and Data Science Framework/10. Modelling - Tuning.srt 4.86 KB
18. Learn Python Part 2/5. Ternary Operator.srt 4.81 KB
17. Learn Python/15. Optional bin() and complex.srt 4.8 KB
18. Learn Python Part 2/35. Why Do We Need Scope.srt 4.77 KB
4. The 2 Paths/1. The 2 Paths.srt 4.71 KB
13. Data Engineering/11. Hadoop, HDFS and MapReduce.srt 4.7 KB
18. Learn Python Part 2/30. Exercise Functions.srt 4.69 KB
3. Machine Learning and Data Science Framework/1. Section Overview.srt 4.65 KB
18. Learn Python Part 2/14. enumerate().srt 4.56 KB
17. Learn Python/35. List Methods 2.srt 4.48 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/10. Optional TensorFlow 2.0 Default Issue.srt 4.48 KB
18. Learn Python Part 2/6. Short Circuiting.srt 4.47 KB
18. Learn Python Part 2/20. Exercise Find Duplicates.srt 4.39 KB
5. Data Science Environment Setup/2. Introducing Our Tools.srt 4.34 KB
3. Machine Learning and Data Science Framework/6. Types of Evaluation.srt 4.33 KB
18. Learn Python Part 2/27. Docstrings.srt 4.28 KB
13. Data Engineering/1. Data Engineering Introduction.srt 4.25 KB
17. Learn Python/42. Dictionary Keys.srt 4.17 KB
17. Learn Python/33. Matrix.srt 4.13 KB
9. Scikit-learn Creating Machine Learning Models/1. Section Overview.srt 4.1 KB
18. Learn Python Part 2/34. nonlocal Keyword.srt 4.07 KB
17. Learn Python/27. Booleans.srt 3.94 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/44. Finishing Dog Vision Where to next.html 3.86 KB
13. Data Engineering/6. What Is A Data Engineer 4.srt 3.86 KB
18. Learn Python Part 2/31. Scope.srt 3.82 KB
6. Pandas Data Analysis/1. Section Overview.srt 3.75 KB
3. Machine Learning and Data Science Framework/2. Introducing Our Framework.srt 3.7 KB
20. Where To Go From Here/2. Thank You.srt 3.64 KB
17. Learn Python/41. DEVELOPER FUNDAMENTALS III.srt 3.59 KB
18. Learn Python Part 2/12. Exercise Tricky Counter.srt 3.58 KB
17. Learn Python/13. Operator Precedence.srt 3.5 KB
17. Learn Python/25. Immutability.srt 3.5 KB
5. Data Science Environment Setup/3. What is Conda.srt 3.41 KB
15. UPLOADED BY FEB 14th Storytelling + Communication How To Present Your Projects/1. Section Overview.srt 3.29 KB
18. Learn Python Part 2/39. zip().srt 3.26 KB
11. Milestone Project 1 Supervised Learning (Classification)/1. Section Overview.srt 3.11 KB
7. NumPy/1. Section Overview.srt 3.11 KB
9. Scikit-learn Creating Machine Learning Models/41. Quick Tip Correlation Analysis.srt 3.09 KB
17. Learn Python/21. Type Conversion.srt 3.09 KB
17. Learn Python/46. Tuples 2.srt 3.08 KB
18. Learn Python Part 2/1. Breaking The Flow.srt 2.98 KB
16. Career Advice + Extra Bits/7. JTS Start With Why.srt 2.96 KB
17. Learn Python/18. Augmented Assignment Operator.srt 2.95 KB
17. Learn Python/38. List Unpacking.srt 2.91 KB
17. Learn Python/6. Exercise How Does Python Work.srt 2.85 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/1. Section Overview.srt 2.77 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/24. Optional How machines learn and what's going on behind the scenes.html 2.72 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/1. Section Overview.srt 2.69 KB
17. Learn Python/7. Learning Python.srt 2.59 KB
1. Introduction/3. Exercise Meet The Community.html 2.51 KB
16. Career Advice + Extra Bits/6. JTS Learn to Learn.srt 2.49 KB
2. Machine Learning 101/9. Section Review.srt 2.34 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/8. Quick Tip Data Visualizations.srt 2.34 KB
13. Data Engineering/12. Apache Spark and Apache Flink.srt 2.31 KB
1. Introduction/2. Join Our Online Classroom!.html 2.27 KB
17. Learn Python/39. None.srt 2.19 KB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/8. Setting Up Our Data 2.srt 2.18 KB
7. NumPy/17. Assignment NumPy Practice.html 2.17 KB
5. Data Science Environment Setup/1. Section Overview.srt 2.12 KB
9. Scikit-learn Creating Machine Learning Models/46. Scikit-Learn Practice.html 2.07 KB
8. Matplotlib + Seaborn Plotting and Data Visualization/20. Assignment Matplotlib Practice.html 2.05 KB
6. Pandas Data Analysis/12. Assignment Pandas Practice.html 2.05 KB
9. Scikit-learn Creating Machine Learning Models/17. Quick Tip How ML Algorithms Work.srt 1.91 KB
12. Milestone Project 2 Supervised Learning (Time Series Data)/1. Section Overview.srt 1.84 KB
17. Learn Python/17. Expressions vs Statements.srt 1.72 KB
21. Extras/1. Bonus Special Thank You Gift.html 1.59 KB
16. Career Advice + Extra Bits/14. Exercise Contribute To Open Source.html 1.43 KB
17. Learn Python/20. String Concatenation.srt 1.42 KB
7. NumPy/3. Quick Note Correction In Next Video.html 1.25 KB
18. Learn Python Part 2/44. Python Exam Testing Your Understanding.html 1.12 KB
6. Pandas Data Analysis/5. Data from URLs.html 1.09 KB
5. Data Science Environment Setup/9. Linux Environment Setup.html 1.03 KB
7. NumPy/18. Optional Extra NumPy resources.html 1.02 KB
9. Scikit-learn Creating Machine Learning Models/5. Quick Note Upcoming Videos.html 1018 B
3. Machine Learning and Data Science Framework/14. Optional Elements of AI.html 975 B
18. Learn Python Part 2/50. Next Steps.html 959 B
16. Career Advice + Extra Bits/13. Coding Challenges.html 948 B
20. Where To Go From Here/1. Become An Alumni.html 944 B
6. Pandas Data Analysis/2. Downloading Workbooks and Assignments.html 774 B
10. Supervised Learning Classification + Regression/1. Milestone Projects!.html 738 B
19. Bonus Learn Advanced Statistics and Mathematics for FREE!/1. Statistics and Mathematics.html 710 B
16. Career Advice + Extra Bits/1. Endorsements On LinkedIn.html 688 B
17. Learn Python/14. Exercise Operator Precedence.html 683 B
8. Matplotlib + Seaborn Plotting and Data Visualization/10. Quick Note Regular Expressions.html 632 B
16. Career Advice + Extra Bits/2. Quick Note Upcoming Video.html 587 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/3. Setting Up With Google.html 568 B
16. Career Advice + Extra Bits/5. Quick Note Upcoming Videos.html 565 B
13. Data Engineering/8. Quick Note Upcoming Video.html 481 B
4. The 2 Paths/2. Python Developer Monthly.html 476 B
18. Learn Python Part 2/46. Quick Note Upcoming Videos.html 448 B
13. Data Engineering/10. Optional Learn SQL.html 410 B
18. Learn Python Part 2/25. Exercise Tesla.html 402 B
9. Scikit-learn Creating Machine Learning Models/3. Quick Note Upcoming Video.html 390 B
6. Pandas Data Analysis/7.1 car-sales.csv.csv 369 B
16. Career Advice + Extra Bits/8. Quick Note Upcoming Videos.html 352 B
16. Career Advice + Extra Bits/4. Learning Guideline.html 310 B
17. Learn Python/9. How To Succeed.html 280 B
9. Scikit-learn Creating Machine Learning Models/16. Quick Note Decision Trees.html 221 B
12. Milestone Project 2 Supervised Learning (Time Series Data)/19.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html 214 B
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.4 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html 214 B
12. Milestone Project 2 Supervised Learning (Time Series Data)/19.1 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html 208 B
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.2 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html 208 B
11. Milestone Project 1 Supervised Learning (Classification)/2.1 End-to-end Heart Disease Classification Notebook (same as in videos).html 207 B
11. Milestone Project 1 Supervised Learning (Classification)/21.2 End-to-end Heart Disease Classification Notebook (same as in videos).html 207 B
15. UPLOADED BY FEB 14th Storytelling + Communication How To Present Your Projects/2. Videos uploaded by FEB 14th.html 203 B
11. Milestone Project 1 Supervised Learning (Classification)/2.3 End-to-end Heart Disease Classification Notebook (with annotations).html 201 B
11. Milestone Project 1 Supervised Learning (Classification)/21.1 End-to-end Heart Disease Classification Notebook (with annotations).html 201 B
9. Scikit-learn Creating Machine Learning Models/2.1 Introduction to Scikit-Learn Jupyter Notebook (from the upcoming videos).html 197 B
9. Scikit-learn Creating Machine Learning Models/45.1 Introduction to Scikit-Learn Jupyter Notebook (from the videos).html 197 B
8. Matplotlib + Seaborn Plotting and Data Visualization/19.1 Introduction to Matplotlib Notebook (from the videos).html 195 B
8. Matplotlib + Seaborn Plotting and Data Visualization/2.2 Introduction to Matplotlib Jupyter Notebook (from the upcoming videos).html 195 B
9. Scikit-learn Creating Machine Learning Models/6.1 Scikit-Learn Reference Notebook.html 194 B
9. Scikit-learn Creating Machine Learning Models/7.1 Example Scikit-Learn Workflow Notebook.html 192 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/43.2 End-to-end Dog Vision Notebook (from the videos).html 191 B
6. Pandas Data Analysis/11.1 Introduction to Pandas Jupyter Notebook (from the videos).html 191 B
6. Pandas Data Analysis/3.3 Introduction to Pandas Jupyter Notebook (from the upcoming videos).html 191 B
9. Scikit-learn Creating Machine Learning Models/2.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html 191 B
9. Scikit-learn Creating Machine Learning Models/45.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html 191 B
7. NumPy/16.2 Introduction to NumPy Jupyter Notebook (from the videos).html 190 B
7. NumPy/2.2 Introduction to NumPy Jupyter Notebook (from the upcoming videos).html 190 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/43.1 End-to-end Dog Vision Notebook (with annotations).html 185 B
6. Pandas Data Analysis/11.2 Introduction to Pandas Jupyter Notebook (with annotations).html 185 B
6. Pandas Data Analysis/3.4 Introduction to Pandas Jupyter Notebook (with annotations).html 185 B
7. NumPy/16.3 Introduction to NumPy Jupyter Notebook (with annotations).html 184 B
7. NumPy/2.3 Introduction to NumPy Jupyter Notebook (with annotations).html 184 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.5 End-to-end Dog Vision Notebook (the project we'll be working through).html 182 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/42.1 Dog Vision Predictions with MobileNetV2 Ready for Kaggle Submission.html 180 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27.2 Step by step breakdown of a convolutional neural network (what MobileNetV2 is made of).html 172 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/41.1 Dog Vision Prediction Probabilities Array.html 170 B
18. Learn Python Part 2/4.1 Truthy vs Falsey Stackoverflow.html 170 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/28.1 [Article] How to choose loss & activation functions when building a deep learning model.html 169 B
5. Data Science Environment Setup/3.1 Getting your computer ready for machine learning How, what and why you should use Anaconda, Miniconda and Conda (blog post).html 167 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27.3 MobileNetV2 (the model we're using) architecture explanation by Sik-Ho Tsang.html 163 B
17. Learn Python/5.2 Python 2 vs Python 3.html 161 B
2. Machine Learning 101/7. Are You Getting It Yet.html 160 B
11. Milestone Project 1 Supervised Learning (Classification)/2.2 Structured Data Projects on GitHub.html 155 B
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.3 Structured Data Projects on GitHub.html 155 B
3. Machine Learning and Data Science Framework/3.1 A 6 Step Field Guide for Machine Learning Modelling (blog post).html 147 B
6. Pandas Data Analysis/9.2 Jake VanderPlas's Data Manipulation with Pandas.html 146 B
12. Milestone Project 2 Supervised Learning (Time Series Data)/9.1 Pandas Categorical Datatype Documentation.html 143 B
5. Data Science Environment Setup/3.2 Getting started with Conda (documentation).html 139 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/31.1 Early Stopping Callback (a way to stop your model from training when it stops improving) Documentation.html 136 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/30.1 TensorBoard Callback Documentation.html 134 B
0. Websites you may like/[FCS Forum].url 133 B
9. Scikit-learn Creating Machine Learning Models/14.1 Scikit-Learn machine learning map (how to choose the right machine learning model).html 133 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.5 MobileNetV2 (the model we're using) on TensorFlow Hub.html 132 B
6. Pandas Data Analysis/3.2 10-minutes to pandas (from the pandas documentation).html 132 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/10.1 Loading TensorFlow 2.0 into a Colab Notebook (if it isn't the default).html 129 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/14.1 Documentation on how many images Google recommends for image problems.html 129 B
0. Websites you may like/[FreeCourseSite.com].url 127 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/35.1 TensorFlow documentation for the unbatch() function.html 127 B
13. Data Engineering/7.1 OLTP vs OLAP.html 126 B
0. Websites you may like/[CourseClub.ME].url 122 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.1 Kaggle Dog Breed Identification Competition (the basis of our upcoming project).html 119 B
17. Learn Python/43.1 Dictionary Methods.html 119 B
7. NumPy/12.1 Matrix Multiplication Explained.html 119 B
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.1 Kaggle Bluebook for Bulldozers Competition.html 118 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/21.1 Yann LeCun's (OG of deep learning) Tweet on Batch Sizes.html 118 B
13. Data Engineering/7.2 A Primer on ACID Transactions.html 117 B
17. Learn Python/16.1 Python Keywords.html 117 B
17. Learn Python/35.2 Python Keywords.html 117 B
5. Data Science Environment Setup/10.1 Dataquest Jupyter Notebook for Beginners Tutorial.html 117 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/12.2 Introduction to Google Colab example notebook.html 116 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.3 Introduction to Google Colab example notebook.html 116 B
17. Learn Python/18.1 Exercise Repl.html 116 B
7. NumPy/10.1 Standard deviation and variance explained.html 116 B
7. NumPy/8.1 Standard deviation and variance explained.html 116 B
7. NumPy/9.1 Standard deviation and variance explained.html 116 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/6.1 Kaggle Dog Breed Identification Competition Data.html 115 B
17. Learn Python/26.1 String Methods.html 115 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/11.1 Google Colab example GPU usage.html 114 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/12.1 Google Colab Example of GPU speed up versus CPU.html 114 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/18.2 Documentation for loading images in TensorFlow.html 114 B
17. Learn Python/46.1 Tuple Methods.html 114 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.4 Google Colab IO example (how to get data in and out of your Colab notebook).html 113 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/6.2 Google Colab IO example (how to get data in and out of your Colab notebook).html 113 B
17. Learn Python/34.1 List Methods.html 113 B
17. Learn Python/48.2 Sets Methods.html 112 B
17. Learn Python/15.1 Base Numbers.html 111 B
5. Data Science Environment Setup/10.2 Jupyter Notebook documentation.html 111 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/5.1 Google Colab FAQ (things you should know about Google Colab).html 110 B
17. Learn Python/26.2 Built in Functions.html 109 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/17.1 Blog post by Rachel Thomas (of fast.ai) on how and why you should create a validation set.html 108 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/26.1 Keras in TensorFlow Overview Documentation.html 108 B
18. Learn Python Part 2/30.1 Solution Repl.html 108 B
6. Pandas Data Analysis/13.1 Course notebooks - Github.html 108 B
9. Scikit-learn Creating Machine Learning Models/2.3 Scikit-Learn Documentation.html 108 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27.1 The Softmax Function (activation function we use in our model).html 107 B
5. Data Science Environment Setup/5.1 Miniconda download documentation.html 107 B
5. Data Science Environment Setup/7.1 Miniconda download documentation.html 107 B
17. Learn Python/13.1 Exercise Repl.html 106 B
17. Learn Python/14.1 Exercise Repl.html 106 B
17. Learn Python/29.1 Python Comments Best Practices.html 106 B
6. Pandas Data Analysis/3.1 Pandas Documentation.html 106 B
17. Learn Python/10.1 Floating point numbers.html 104 B
17. Learn Python/23.1 Exercise Repl.html 104 B
17. Learn Python/5.1 The Story of Python.html 104 B
8. Matplotlib + Seaborn Plotting and Data Visualization/2.1 Matplotlib Documentation.html 103 B
18. Learn Python Part 2/20.1 Solution Repl.html 102 B
18. Learn Python Part 2/43.1 Solution Repl.html 102 B
17. Learn Python/24.1 Exercise Repl.html 101 B
2. Machine Learning 101/3.1 Teachable Machine.html 101 B
18. Learn Python Part 2/43.2 Exercise Repl.html 100 B
18. Learn Python Part 2/18.1 Solution Repl.html 99 B
18. Learn Python Part 2/18.2 Exercise Repl.html 99 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/18.1 TensorFlow guidelines for loading all kinds of data (turning your data into Tensors).html 98 B
17. Learn Python/44.1 Exercise Repl.html 97 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.1 Andrei Karpathy's talk on AI at Tesla.html 95 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.2 Google Colab (our workspace for the upcoming project).html 95 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/5.2 Google Colab (our workspace for the upcoming project).html 95 B
18. Learn Python Part 2/34.1 Solution Repl.html 95 B
6. Pandas Data Analysis/13.2 Google Colab.html 95 B
17. Learn Python/35.1 Exercise Repl.html 94 B
17. Learn Python/37.1 Exercise Repl.html 94 B
17. Learn Python/33.1 Exercise Repl.html 93 B
5. Data Science Environment Setup/3.3 Conda documentation.html 93 B
13. Data Engineering/2.1 Kaggle.html 92 B
17. Learn Python/32.1 Exercise Repl.html 92 B
18. Learn Python Part 2/12.1 Solution Repl.html 92 B
17. Learn Python/48.1 Exercise Repl.html 91 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.3 Papers with Code (a great resource for some of the best machine learning papers with code examples).html 88 B
2. Machine Learning 101/5.1 Machine Learning Playground.html 88 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.2 PyTorch Hub (PyTorch version of TensorFlow Hub).html 85 B
7. NumPy/2.1 NumPy Documentation.html 83 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/23.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html 79 B
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.4 TensorFlow Hub (resource for pre-trained deep learning models and more).html 79 B
Download Info
-
Tips
“[FreeCourseSite.com] Udemy - Complete Machine Learning and Data Science Zero to Mastery” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.
-
DMCA Notice and Takedown Procedure
If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.