Download link
File List
-
9. Appendix/3. Windows-Focused Environment Setup 2018.mp4 186.16 MB
7. A3C/5. A3C - Code pt 4.mp4 184.35 MB
8. Theano and Tensorflow Basics Review/4. (Review) Tensorflow Neural Network in Code.mp4 97.29 MB
8. Theano and Tensorflow Basics Review/1. (Review) Theano Basics.mp4 93.4 MB
8. Theano and Tensorflow Basics Review/2. (Review) Theano Neural Network in Code.mp4 87 MB
7. A3C/4. A3C - Code pt 3.mp4 84.52 MB
8. Theano and Tensorflow Basics Review/3. (Review) Tensorflow Basics.mp4 81.43 MB
9. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp4 78.25 MB
7. A3C/1. A3C - Theory and Outline.mp4 71.76 MB
7. A3C/3. A3C - Code pt 2.mp4 57.61 MB
7. A3C/2. A3C - Code pt 1 (Warmup).mp4 50.09 MB
9. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.92 MB
9. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 38.96 MB
9. Appendix/13. What order should I take your courses in (part 2).mp4 37.62 MB
9. Appendix/12. What order should I take your courses in (part 1).mp4 29.33 MB
9. Appendix/5. How to Code by Yourself (part 1).mp4 24.53 MB
5. Policy Gradients/9. Mountain Car Continuous Theano (v2).mp4 22.19 MB
5. Policy Gradients/7. Mountain Car Continuous Tensorflow.mp4 20.09 MB
6. Deep Q-Learning/7. Deep Q-Learning in Theano for Breakout.mp4 20.04 MB
5. Policy Gradients/6. Mountain Car Continuous Theano.mp4 19.07 MB
1. Introduction and Logistics/4. Tensorflow or Theano - Your Choice!.mp4 18.93 MB
5. Policy Gradients/8. Mountain Car Continuous Tensorflow (v2).mp4 18.78 MB
9. Appendix/7. How to Succeed in this Course (Long Version).mp4 18.32 MB
5. Policy Gradients/2. Policy Gradient in TensorFlow for CartPole.mp4 17.98 MB
5. Policy Gradients/1. Policy Gradient Methods.mp4 17.95 MB
9. Appendix/11. Is Theano Dead.mp4 17.82 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/6. RBF Neural Networks.mp4 16.52 MB
1. Introduction and Logistics/1. Introduction and Outline.mp4 15.83 MB
6. Deep Q-Learning/6. Deep Q-Learning in Tensorflow for Breakout.mp4 15.76 MB
6. Deep Q-Learning/3. Deep Q-Learning in Tensorflow for CartPole.mp4 14.99 MB
9. Appendix/6. How to Code by Yourself (part 2).mp4 14.8 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/5. CartPole with Bins (Code).mp4 14.7 MB
6. Deep Q-Learning/2. Deep Q-Learning Techniques.mp4 14.45 MB
6. Deep Q-Learning/4. Deep Q-Learning in Theano for CartPole.mp4 13.77 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/7. RBF Networks with Mountain Car (Code).mp4 13.75 MB
5. Policy Gradients/3. Policy Gradient in Theano for CartPole.mp4 13.44 MB
2. Background Review/2. Review of Markov Decision Processes.mp4 12.31 MB
4. TD Lambda/3. TD Lambda.mp4 11.78 MB
2. Background Review/7. Review of Deep Learning.mp4 11.05 MB
6. Deep Q-Learning/9. Deep Q-Learning Section Summary.mp4 10.4 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/2. Random Search.mp4 10.29 MB
4. TD Lambda/2. N-Step in Code.mp4 9.47 MB
7. A3C/7. Course Summary.mp4 9.46 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/9. RBF Networks with CartPole (Code).mp4 8.91 MB
7. A3C/6. A3C - Section Summary.mp4 8.85 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/1. OpenAI Gym Tutorial.mp4 8.67 MB
6. Deep Q-Learning/5. Additional Implementation Details for Atari.mp4 8.51 MB
9. Appendix/10. Python 2 vs Python 3.mp4 7.84 MB
4. TD Lambda/4. TD Lambda in Code.mp4 7.62 MB
6. Deep Q-Learning/8. Partially Observable MDPs.mp4 7.6 MB
2. Background Review/5. Review of Temporal Difference Learning.mp4 7.16 MB
5. Policy Gradients/4. Continuous Action Spaces.mp4 6.58 MB
2. Background Review/3. Review of Dynamic Programming.mp4 6.51 MB
5. Policy Gradients/5. Mountain Car Continuous Specifics.mp4 6.5 MB
2. Background Review/4. Review of Monte Carlo Methods.mp4 6.18 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/4. CartPole with Bins (Theory).mp4 6.02 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/12. Plugging in a Neural Network.mp4 5.92 MB
6. Deep Q-Learning/1. Deep Q-Learning Intro.mp4 5.9 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/10. Theano Warmup.mp4 5.83 MB
9. Appendix/1. What is the Appendix.mp4 5.46 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/13. OpenAI Gym Section Summary.mp4 5.32 MB
1. Introduction and Logistics/2. Where to get the Code.mp4 5.2 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/11. Tensorflow Warmup.mp4 5.07 MB
4. TD Lambda/1. N-Step Methods.mp4 5.03 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/3. Saving a Video.mp4 4.54 MB
2. Background Review/1. Review Intro.mp4 4.2 MB
9. Appendix/2. Where to get Udemy coupons and FREE deep learning material.mp4 4.03 MB
2. Background Review/6. Review of Approximation Methods for Reinforcement Learning.mp4 3.67 MB
4. TD Lambda/5. TD Lambda Summary.mp4 3.65 MB
5. Policy Gradients/10. Policy Gradient Section Summary.mp4 3.33 MB
1. Introduction and Logistics/3. How to Succeed in this Course.mp4 3.3 MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/8. RBF Networks with CartPole (Theory).mp4 3.05 MB
9. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 27.77 KB
9. Appendix/13. What order should I take your courses in (part 2).vtt 20.24 KB
9. Appendix/5. How to Code by Yourself (part 1).vtt 19.78 KB
7. A3C/5. A3C - Code pt 4.vtt 18.59 KB
7. A3C/1. A3C - Theory and Outline.vtt 17.85 KB
9. Appendix/3. Windows-Focused Environment Setup 2018.vtt 17.39 KB
9. Appendix/12. What order should I take your courses in (part 1).vtt 14.09 KB
5. Policy Gradients/1. Policy Gradient Methods.vtt 13.02 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/6. RBF Neural Networks.vtt 12.8 KB
9. Appendix/7. How to Succeed in this Course (Long Version).vtt 12.79 KB
1. Introduction and Logistics/1. Introduction and Outline.vtt 12.77 KB
9. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 12.4 KB
9. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.vtt 12.22 KB
9. Appendix/6. How to Code by Yourself (part 2).vtt 11.62 KB
9. Appendix/11. Is Theano Dead.vtt 11.3 KB
6. Deep Q-Learning/2. Deep Q-Learning Techniques.vtt 10.77 KB
5. Policy Gradients/7. Mountain Car Continuous Tensorflow.vtt 8.95 KB
2. Background Review/2. Review of Markov Decision Processes.vtt 8.86 KB
5. Policy Gradients/6. Mountain Car Continuous Theano.vtt 8.57 KB
4. TD Lambda/3. TD Lambda.vtt 8.22 KB
2. Background Review/7. Review of Deep Learning.vtt 8.17 KB
7. A3C/4. A3C - Code pt 3.vtt 7.95 KB
5. Policy Gradients/2. Policy Gradient in TensorFlow for CartPole.vtt 7.69 KB
5. Policy Gradients/9. Mountain Car Continuous Theano (v2).vtt 7.36 KB
7. A3C/3. A3C - Code pt 2.vtt 7.32 KB
6. Deep Q-Learning/7. Deep Q-Learning in Theano for Breakout.vtt 7.11 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/5. CartPole with Bins (Code).vtt 7.01 KB
7. A3C/2. A3C - Code pt 1 (Warmup).vtt 6.83 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/1. OpenAI Gym Tutorial.vtt 6.76 KB
8. Theano and Tensorflow Basics Review/1. (Review) Theano Basics.vtt 6.31 KB
5. Policy Gradients/8. Mountain Car Continuous Tensorflow (v2).vtt 6.2 KB
6. Deep Q-Learning/5. Additional Implementation Details for Atari.vtt 6.15 KB
6. Deep Q-Learning/6. Deep Q-Learning in Tensorflow for Breakout.vtt 6.09 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/2. Random Search.vtt 6.04 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/7. RBF Networks with Mountain Car (Code).vtt 5.67 KB
9. Appendix/10. Python 2 vs Python 3.vtt 5.35 KB
7. A3C/7. Course Summary.vtt 5.33 KB
6. Deep Q-Learning/9. Deep Q-Learning Section Summary.vtt 5.32 KB
2. Background Review/5. Review of Temporal Difference Learning.vtt 5.23 KB
6. Deep Q-Learning/3. Deep Q-Learning in Tensorflow for CartPole.vtt 5.12 KB
6. Deep Q-Learning/8. Partially Observable MDPs.vtt 5.09 KB
8. Theano and Tensorflow Basics Review/3. (Review) Tensorflow Basics.vtt 5.06 KB
6. Deep Q-Learning/4. Deep Q-Learning in Theano for CartPole.vtt 4.78 KB
8. Theano and Tensorflow Basics Review/4. (Review) Tensorflow Neural Network in Code.vtt 4.78 KB
1. Introduction and Logistics/4. Tensorflow or Theano - Your Choice!.vtt 4.75 KB
2. Background Review/3. Review of Dynamic Programming.vtt 4.7 KB
5. Policy Gradients/4. Continuous Action Spaces.vtt 4.67 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/4. CartPole with Bins (Theory).vtt 4.6 KB
5. Policy Gradients/5. Mountain Car Continuous Specifics.vtt 4.45 KB
2. Background Review/4. Review of Monte Carlo Methods.vtt 4.41 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/12. Plugging in a Neural Network.vtt 4.28 KB
6. Deep Q-Learning/1. Deep Q-Learning Intro.vtt 4.24 KB
1. Introduction and Logistics/2. Where to get the Code.vtt 4.09 KB
5. Policy Gradients/3. Policy Gradient in Theano for CartPole.vtt 4 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/13. OpenAI Gym Section Summary.vtt 3.71 KB
4. TD Lambda/2. N-Step in Code.vtt 3.71 KB
1. Introduction and Logistics/3. How to Succeed in this Course.vtt 3.49 KB
4. TD Lambda/1. N-Step Methods.vtt 3.42 KB
8. Theano and Tensorflow Basics Review/2. (Review) Theano Neural Network in Code.vtt 3.29 KB
9. Appendix/1. What is the Appendix.vtt 3.28 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/9. RBF Networks with CartPole (Code).vtt 3.17 KB
2. Background Review/1. Review Intro.vtt 3.14 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/10. Theano Warmup.vtt 3.08 KB
9. Appendix/2. Where to get Udemy coupons and FREE deep learning material.vtt 2.99 KB
4. TD Lambda/4. TD Lambda in Code.vtt 2.92 KB
4. TD Lambda/5. TD Lambda Summary.vtt 2.64 KB
2. Background Review/6. Review of Approximation Methods for Reinforcement Learning.vtt 2.51 KB
7. A3C/6. A3C - Section Summary.vtt 2.36 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/11. Tensorflow Warmup.vtt 2.19 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/8. RBF Networks with CartPole (Theory).vtt 2.17 KB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/3. Saving a Video.vtt 2.1 KB
5. Policy Gradients/10. Policy Gradient Section Summary.vtt 1.67 KB
[FreeCourseLab.com].url 126 B
Download Info
-
Tips
“[FreeCourseLab.com] Udemy - Advanced AI Deep Reinforcement Learning in Python” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.
-
DMCA Notice and Takedown Procedure
If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.