Download link
File List
-
8. Appendix/2. Windows-Focused Environment Setup 2018.mp4 193.26 MB
8. Appendix/3. How to How to install Numpy, Theano, Tensorflow, etc....mp4 166.45 MB
2. Review/6. CNN Code (part 1).mp4 148.61 MB
8. Appendix/10. What order should I take your courses in (part 2).mp4 122.65 MB
8. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 115.85 MB
5. Attention/5. Attention Code 1.mp4 99.94 MB
8. Appendix/9. What order should I take your courses in (part 1).mp4 88.04 MB
4. Sequence-to-sequence models (Seq2Seq)/7. Seq2Seq in Code 1.mp4 84.34 MB
4. Sequence-to-sequence models (Seq2Seq)/5. Poetry Revisited Code 1.mp4 82.59 MB
8. Appendix/6. How to Code by Yourself (part 1).mp4 82.11 MB
6. Memory Networks/3. Memory Networks Code 1.mp4 79.62 MB
8. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.mp4 78.26 MB
5. Attention/8. Building a Chatbot without any more Code.mp4 76.15 MB
4. Sequence-to-sequence models (Seq2Seq)/6. Poetry Revisited Code 2.mp4 66.56 MB
7. Basics Review/2. (Review) Keras Neural Network in Code.mp4 66.11 MB
2. Review/4. What is a CNN.mp4 61.97 MB
5. Attention/2. Attention Theory.mp4 61.82 MB
2. Review/7. CNN Code (part 2).mp4 59.29 MB
2. Review/2. What is a word embedding.mp4 57.53 MB
2. Review/10. Different Types of RNN Tasks.mp4 56.79 MB
2. Review/8. What is an RNN.mp4 56.61 MB
8. Appendix/7. How to Code by Yourself (part 2).mp4 56.22 MB
2. Review/11. A Simple RNN Experiment.mp4 56 MB
6. Memory Networks/5. Memory Networks Code 3.mp4 55.85 MB
6. Memory Networks/4. Memory Networks Code 2.mp4 53.55 MB
4. Sequence-to-sequence models (Seq2Seq)/8. Seq2Seq in Code 2.mp4 50.59 MB
2. Review/9. GRUs and LSTMs.mp4 49.64 MB
3. Bidirectional RNNs/2. Bidirectional RNN Experiment.mp4 48.7 MB
3. Bidirectional RNNs/5. Image Classification Code.mp4 48.62 MB
5. Attention/6. Attention Code 2.mp4 41.6 MB
5. Attention/4. Helpful Implementation Details.mp4 40.88 MB
6. Memory Networks/1. Memory Networks Section Introduction.mp4 39.23 MB
8. Appendix/5. How to Succeed in this Course (Long Version).mp4 39.01 MB
7. Basics Review/3. (Review) Keras Functional API.mp4 38.6 MB
3. Bidirectional RNNs/1. Bidirectional RNNs Motivation.mp4 33.35 MB
3. Bidirectional RNNs/4. Image Classification with Bidirectional RNNs.mp4 32.78 MB
4. Sequence-to-sequence models (Seq2Seq)/1. Seq2Seq Theory.mp4 32.51 MB
4. Sequence-to-sequence models (Seq2Seq)/3. Decoding in Detail and Teacher Forcing.mp4 31.13 MB
2. Review/12. RNN Code.mp4 31.1 MB
6. Memory Networks/2. Memory Networks Theory.mp4 30.4 MB
7. Basics Review/1. (Review) Keras Discussion.mp4 27.64 MB
2. Review/5. Where to get the data.mp4 27.15 MB
3. Bidirectional RNNs/3. Bidirectional RNN Code.mp4 22.72 MB
2. Review/1. Review Section Introduction.mp4 20.75 MB
2. Review/13. Review Section Summary.mp4 19.64 MB
1. Welcome/3. Where to get the code.mp4 19.58 MB
8. Appendix/11. Python 2 vs Python 3.mp4 18.79 MB
2. Review/3. Using word embeddings.mp4 18.67 MB
8. Appendix/1. What is the Appendix.mp4 17.68 MB
1. Welcome/4. How to Succeed in this Course.mp4 17.41 MB
1. Welcome/2. Outline.mp4 16.14 MB
4. Sequence-to-sequence models (Seq2Seq)/2. Seq2Seq Applications.mp4 16.12 MB
6. Memory Networks/6. Memory Networks Section Summary.mp4 16.11 MB
1. Welcome/1. Introduction.mp4 14.42 MB
3. Bidirectional RNNs/6. Bidirectional RNNs Section Summary.mp4 13.99 MB
5. Attention/9. Attention Section Summary.mp4 13.88 MB
4. Sequence-to-sequence models (Seq2Seq)/9. Seq2Seq Section Summary.mp4 13.63 MB
8. Appendix/12. BONUS Where to get discount coupons and FREE deep learning material.mp4 13.07 MB
4. Sequence-to-sequence models (Seq2Seq)/4. Poetry Revisited.mp4 12.47 MB
5. Attention/7. Visualizing Attention.mp4 10.43 MB
5. Attention/1. Attention Section Introduction.mp4 8.41 MB
5. Attention/3. Teacher Forcing.mp4 7.18 MB
8. Appendix/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 27.96 KB
5. Attention/2. Attention Theory.vtt 20.86 KB
8. Appendix/10. What order should I take your courses in (part 2).vtt 20.29 KB
8. Appendix/6. How to Code by Yourself (part 1).vtt 19.61 KB
2. Review/6. CNN Code (part 1).vtt 17.47 KB
8. Appendix/2. Windows-Focused Environment Setup 2018.vtt 17.38 KB
2. Review/2. What is a word embedding.vtt 16.66 KB
2. Review/4. What is a CNN.vtt 15.69 KB
2. Review/8. What is an RNN.vtt 15.12 KB
8. Appendix/9. What order should I take your courses in (part 1).vtt 14.17 KB
2. Review/10. Different Types of RNN Tasks.vtt 13.46 KB
5. Attention/4. Helpful Implementation Details.vtt 13.11 KB
8. Appendix/5. How to Succeed in this Course (Long Version).vtt 12.84 KB
8. Appendix/3. How to How to install Numpy, Theano, Tensorflow, etc....vtt 12.41 KB
8. Appendix/8. Proof that using Jupyter Notebook is the same as not using it.vtt 12.22 KB
2. Review/9. GRUs and LSTMs.vtt 12.15 KB
8. Appendix/7. How to Code by Yourself (part 2).vtt 11.62 KB
6. Memory Networks/1. Memory Networks Section Introduction.vtt 11.06 KB
6. Memory Networks/2. Memory Networks Theory.vtt 10.7 KB
5. Attention/5. Attention Code 1.vtt 10.28 KB
5. Attention/8. Building a Chatbot without any more Code.vtt 10.08 KB
4. Sequence-to-sequence models (Seq2Seq)/5. Poetry Revisited Code 1.vtt 9.5 KB
3. Bidirectional RNNs/1. Bidirectional RNNs Motivation.vtt 9.23 KB
6. Memory Networks/3. Memory Networks Code 1.vtt 8.4 KB
4. Sequence-to-sequence models (Seq2Seq)/7. Seq2Seq in Code 1.vtt 8.33 KB
4. Sequence-to-sequence models (Seq2Seq)/1. Seq2Seq Theory.vtt 8.11 KB
7. Basics Review/1. (Review) Keras Discussion.vtt 8.05 KB
4. Sequence-to-sequence models (Seq2Seq)/3. Decoding in Detail and Teacher Forcing.vtt 7.55 KB
4. Sequence-to-sequence models (Seq2Seq)/6. Poetry Revisited Code 2.vtt 7.46 KB
2. Review/7. CNN Code (part 2).vtt 6.9 KB
3. Bidirectional RNNs/4. Image Classification with Bidirectional RNNs.vtt 6.75 KB
2. Review/11. A Simple RNN Experiment.vtt 6.65 KB
7. Basics Review/2. (Review) Keras Neural Network in Code.vtt 6.47 KB
6. Memory Networks/5. Memory Networks Code 3.vtt 6.15 KB
3. Bidirectional RNNs/5. Image Classification Code.vtt 5.81 KB
1. Welcome/3. Where to get the code.vtt 5.73 KB
2. Review/5. Where to get the data.vtt 5.68 KB
2. Review/13. Review Section Summary.vtt 5.59 KB
4. Sequence-to-sequence models (Seq2Seq)/8. Seq2Seq in Code 2.vtt 5.42 KB
2. Review/3. Using word embeddings.vtt 5.39 KB
8. Appendix/11. Python 2 vs Python 3.vtt 5.34 KB
2. Review/1. Review Section Introduction.vtt 5.29 KB
1. Welcome/2. Outline.vtt 5.21 KB
6. Memory Networks/4. Memory Networks Code 2.vtt 5.19 KB
3. Bidirectional RNNs/2. Bidirectional RNN Experiment.vtt 5.18 KB
7. Basics Review/3. (Review) Keras Functional API.vtt 4.7 KB
6. Memory Networks/6. Memory Networks Section Summary.vtt 4.35 KB
5. Attention/9. Attention Section Summary.vtt 3.94 KB
4. Sequence-to-sequence models (Seq2Seq)/2. Seq2Seq Applications.vtt 3.83 KB
4. Sequence-to-sequence models (Seq2Seq)/4. Poetry Revisited.vtt 3.72 KB
2. Review/12. RNN Code.vtt 3.7 KB
5. Attention/6. Attention Code 2.vtt 3.69 KB
1. Welcome/4. How to Succeed in this Course.vtt 3.49 KB
1. Welcome/1. Introduction.vtt 3.34 KB
4. Sequence-to-sequence models (Seq2Seq)/9. Seq2Seq Section Summary.vtt 3.31 KB
8. Appendix/1. What is the Appendix.vtt 3.27 KB
8. Appendix/12. BONUS Where to get discount coupons and FREE deep learning material.vtt 2.99 KB
5. Attention/7. Visualizing Attention.vtt 2.71 KB
3. Bidirectional RNNs/6. Bidirectional RNNs Section Summary.vtt 2.67 KB
5. Attention/1. Attention Section Introduction.vtt 2.65 KB
3. Bidirectional RNNs/3. Bidirectional RNN Code.vtt 2.42 KB
5. Attention/3. Teacher Forcing.vtt 2.25 KB
[FreeCourseLab.com].url 126 B
Download Info
-
Tips
“[FreeCourseLab.com] Udemy - Deep Learning Advanced NLP and RNNs” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.
-
DMCA Notice and Takedown Procedure
If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.